## 混型
術語*混型*隨時間的推移好像擁有了無數的含義,但是其最基本的概念是混合多個類的能力,以產生一個可以表示混型中所有類型的類。這往往是你最后的手段,它將使組裝多個類變得簡單易行。
混型的價值之一是它們可以將特性和行為一致地應用于多個類之上。如果想在混型類中修改某些東西,作為一種意外的好處,這些修改將會應用于混型所應用的所有類型之上。正由于此,混型有一點*面向切面編程* (AOP) 的味道,而切面經常被建議用來解決混型問題。
### C++ 中的混型
在 C++ 中,使用多重繼承的最大理由,就是為了使用混型。但是,對于混型來說,更有趣、更優雅的方式是使用參數化類型,因為混型就是繼承自其類型參數的類。在 C++ 中,可以很容易地創建混型,因為 C++ 能夠記住其模版參數的類型。
下面是一個 C++ 示例,它有兩個混型類型:一個使得你可以在每個對象中混入擁有一個時間戳這樣的屬性,而另一個可以混入一個序列號。
```c++
// generics/Mixins.cpp
#include <string>
#include <ctime>
#include <iostream>
using namespace std;
template<class T> class TimeStamped : public T {
long timeStamp;
public:
TimeStamped() { timeStamp = time(0); }
long getStamp() { return timeStamp; }
};
template<class T> class SerialNumbered : public T {
long serialNumber;
static long counter;
public:
SerialNumbered() { serialNumber = counter++; }
long getSerialNumber() { return serialNumber; }
};
// Define and initialize the static storage:
template<class T> long SerialNumbered<T>::counter = 1;
class Basic {
string value;
public:
void set(string val) { value = val; }
string get() { return value; }
};
int main() {
TimeStamped<SerialNumbered<Basic>> mixin1, mixin2;
mixin1.set("test string 1");
mixin2.set("test string 2");
cout << mixin1.get() << " " << mixin1.getStamp() <<
" " << mixin1.getSerialNumber() << endl;
cout << mixin2.get() << " " << mixin2.getStamp() <<
" " << mixin2.getSerialNumber() << endl;
}
/* Output:
test string 1 1452987605 1
test string 2 1452987605 2
*/
```
在 `main()` 中, **mixin1** 和 **mixin2** 所產生的類型擁有所混入類型的所有方法。可以將混型看作是一種功能,它可以將現有類映射到新的子類上。注意,使用這種技術來創建一個混型是多么的輕而易舉。基本上,只需要聲明“這就是我想要的”,緊跟著它就發生了:
```c++
TimeStamped<SerialNumbered<Basic>> mixin1,mixin2;
```
遺憾的是,Java 泛型不允許這樣。擦除會忘記基類類型,因此
> 泛型類不能直接繼承自一個泛型參數
這突顯了許多我在 Java 語言設計決策(以及與這些功能一起發布)中遇到的一大問題:處理一件事很有希望,但是當您實際嘗試做一些有趣的事情時,您會發現自己做不到。
### 與接口混合
一種更常見的推薦解決方案是使用接口來產生混型效果,就像下面這樣:
```java
// generics/Mixins.java
import java.util.*;
interface TimeStamped { long getStamp(); }
class TimeStampedImp implements TimeStamped {
private final long timeStamp;
TimeStampedImp() {
timeStamp = new Date().getTime();
}
@Override
public long getStamp() { return timeStamp; }
}
interface SerialNumbered { long getSerialNumber(); }
class SerialNumberedImp implements SerialNumbered {
private static long counter = 1;
private final long serialNumber = counter++;
@Override
public long getSerialNumber() { return serialNumber; }
}
interface Basic {
void set(String val);
String get();
}
class BasicImp implements Basic {
private String value;
@Override
public void set(String val) { value = val; }
@Override
public String get() { return value; }
}
class Mixin extends BasicImp
implements TimeStamped, SerialNumbered {
private TimeStamped timeStamp = new TimeStampedImp();
private SerialNumbered serialNumber =
new SerialNumberedImp();
@Override
public long getStamp() {
return timeStamp.getStamp();
}
@Override
public long getSerialNumber() {
return serialNumber.getSerialNumber();
}
}
public class Mixins {
public static void main(String[] args) {
Mixin mixin1 = new Mixin(), mixin2 = new Mixin();
mixin1.set("test string 1");
mixin2.set("test string 2");
System.out.println(mixin1.get() + " " +
mixin1.getStamp() + " " + mixin1.getSerialNumber());
System.out.println(mixin2.get() + " " +
mixin2.getStamp() + " " + mixin2.getSerialNumber());
}
}
/* Output:
test string 1 1494331663026 1
test string 2 1494331663027 2
*/
```
**Mixin** 類基本上是在使用*委托*,因此每個混入類型都要求在 **Mixin** 中有一個相應的域,而你必須在 **Mixin** 中編寫所有必需的方法,將方法調用轉發給恰當的對象。這個示例使用了非常簡單的類,但是當使用更復雜的混型時,代碼數量會急速增加。
### 使用裝飾器模式
當你觀察混型的使用方式時,就會發現混型概念好像與*裝飾器*設計模式關系很近。裝飾器經常用于滿足各種可能的組合,而直接子類化會產生過多的類,因此是不實際的。
裝飾器模式使用分層對象來動態透明地向單個對象中添加責任。裝飾器指定包裝在最初的對象周圍的所有對象都具有相同的基本接口。某些事物是可裝飾的,可以通過將其他類包裝在這個可裝飾對象的四周,來將功能分層。這使得對裝飾器的使用是透明的——無論對象是否被裝飾,你都擁有一個可以向對象發送的公共消息集。裝飾類也可以添加新方法,但是正如你所見,這將是受限的。
裝飾器是通過使用組合和形式化結構(可裝飾物/裝飾器層次結構)來實現的,而混型是基于繼承的。因此可以將基于參數化類型的混型當作是一種泛型裝飾器機制,這種機制不需要裝飾器設計模式的繼承結構。
前面的示例可以被改寫為使用裝飾器:
```java
// generics/decorator/Decoration.java
// {java generics.decorator.Decoration}
package generics.decorator;
import java.util.*;
class Basic {
private String value;
public void set(String val) { value = val; }
public String get() { return value; }
}
class Decorator extends Basic {
protected Basic basic;
Decorator(Basic basic) { this.basic = basic; }
@Override
public void set(String val) { basic.set(val); }
@Override
public String get() { return basic.get(); }
}
class TimeStamped extends Decorator {
private final long timeStamp;
TimeStamped(Basic basic) {
super(basic);
timeStamp = new Date().getTime();
}
public long getStamp() { return timeStamp; }
}
class SerialNumbered extends Decorator {
private static long counter = 1;
private final long serialNumber = counter++;
SerialNumbered(Basic basic) { super(basic); }
public long getSerialNumber() { return serialNumber; }
}
public class Decoration {
public static void main(String[] args) {
TimeStamped t = new TimeStamped(new Basic());
TimeStamped t2 = new TimeStamped(
new SerialNumbered(new Basic()));
//- t2.getSerialNumber(); // Not available
SerialNumbered s = new SerialNumbered(new Basic());
SerialNumbered s2 = new SerialNumbered(
new TimeStamped(new Basic()));
//- s2.getStamp(); // Not available
}
}
```
產生自泛型的類包含所有感興趣的方法,但是由使用裝飾器所產生的對象類型是最后被裝飾的類型。也就是說,盡管可以添加多個層,但是最后一層才是實際的類型,因此只有最后一層的方法是可視的,而混型的類型是所有被混合到一起的類型。因此對于裝飾器來說,其明顯的缺陷是它只能有效地工作于裝飾中的一層(最后一層),而混型方法顯然會更自然一些。因此,裝飾器只是對由混型提出的問題的一種局限的解決方案。
### 與動態代理混合
可以使用動態代理來創建一種比裝飾器更貼近混型模型的機制(查看 [類型信息](book/19-Type-Information.md) 一章中關于 Java 的動態代理如何工作的解釋)。通過使用動態代理,所產生的類的動態類型將會是已經混入的組合類型。
由于動態代理的限制,每個被混入的類都必須是某個接口的實現:
```java
// generics/DynamicProxyMixin.java
import java.lang.reflect.*;
import java.util.*;
import onjava.*;
import static onjava.Tuple.*;
class MixinProxy implements InvocationHandler {
Map<String, Object> delegatesByMethod;
@SuppressWarnings("unchecked")
MixinProxy(Tuple2<Object, Class<?>>... pairs) {
delegatesByMethod = new HashMap<>();
for(Tuple2<Object, Class<?>> pair : pairs) {
for(Method method : pair.a2.getMethods()) {
String methodName = method.getName();
// The first interface in the map
// implements the method.
if(!delegatesByMethod.containsKey(methodName))
delegatesByMethod.put(methodName, pair.a1);
}
}
}
@Override
public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {
String methodName = method.getName();
Object delegate = delegatesByMethod.get(methodName);
return method.invoke(delegate, args);
}
@SuppressWarnings("unchecked")
public static Object newInstance(Tuple2... pairs) {
Class[] interfaces = new Class[pairs.length];
for(int i = 0; i < pairs.length; i++) {
interfaces[i] = (Class)pairs[i].a2;
}
ClassLoader cl = pairs[0].a1.getClass().getClassLoader();
return Proxy.newProxyInstance(cl, interfaces, new MixinProxy(pairs));
}
}
public class DynamicProxyMixin {
public static void main(String[] args) {
Object mixin = MixinProxy.newInstance(
tuple(new BasicImp(), Basic.class),
tuple(new TimeStampedImp(), TimeStamped.class),
tuple(new SerialNumberedImp(), SerialNumbered.class));
Basic b = (Basic)mixin;
TimeStamped t = (TimeStamped)mixin;
SerialNumbered s = (SerialNumbered)mixin;
b.set("Hello");
System.out.println(b.get());
System.out.println(t.getStamp());
System.out.println(s.getSerialNumber());
}
}
/* Output:
Hello
1494331653339
1
*/
```
因為只有動態類型而不是靜態類型才包含所有的混入類型,因此這仍舊不如 C++ 的方式好,因為可以在具有這些類型的對象上調用方法之前,你被強制要求必須先將這些對象向下轉型到恰當的類型。但是,它明顯地更接近于真正的混型。
為了讓 Java 支持混型,人們已經做了大量的工作朝著這個目標努力,包括創建了至少一種附加語言( Jam 語言),它是專門用來支持混型的。
- 譯者的話
- 前言
- 簡介
- 第一章 對象的概念
- 抽象
- 接口
- 服務提供
- 封裝
- 復用
- 繼承
- "是一個"與"像是一個"的關系
- 多態
- 單繼承結構
- 集合
- 對象創建與生命周期
- 異常處理
- 本章小結
- 第二章 安裝Java和本書用例
- 編輯器
- Shell
- Java安裝
- 校驗安裝
- 安裝和運行代碼示例
- 第三章 萬物皆對象
- 對象操縱
- 對象創建
- 數據存儲
- 基本類型的存儲
- 高精度數值
- 數組的存儲
- 代碼注釋
- 對象清理
- 作用域
- 對象作用域
- 類的創建
- 類型
- 字段
- 基本類型默認值
- 方法使用
- 返回類型
- 參數列表
- 程序編寫
- 命名可見性
- 使用其他組件
- static關鍵字
- 小試牛刀
- 編譯和運行
- 編碼風格
- 本章小結
- 第四章 運算符
- 開始使用
- 優先級
- 賦值
- 方法調用中的別名現象
- 算術運算符
- 一元加減運算符
- 遞增和遞減
- 關系運算符
- 測試對象等價
- 邏輯運算符
- 短路
- 字面值常量
- 下劃線
- 指數計數法
- 位運算符
- 移位運算符
- 三元運算符
- 字符串運算符
- 常見陷阱
- 類型轉換
- 截斷和舍入
- 類型提升
- Java沒有sizeof
- 運算符總結
- 本章小結
- 第五章 控制流
- true和false
- if-else
- 迭代語句
- while
- do-while
- for
- 逗號操作符
- for-in 語法
- return
- break 和 continue
- 臭名昭著的 goto
- switch
- switch 字符串
- 本章小結
- 第六章 初始化和清理
- 利用構造器保證初始化
- 方法重載
- 區分重載方法
- 重載與基本類型
- 返回值的重載
- 無參構造器
- this關鍵字
- 在構造器中調用構造器
- static 的含義
- 垃圾回收器
- finalize()的用途
- 你必須實施清理
- 終結條件
- 垃圾回收器如何工作
- 成員初始化
- 指定初始化
- 構造器初始化
- 初始化的順序
- 靜態數據的初始化
- 顯式的靜態初始化
- 非靜態實例初始化
- 數組初始化
- 動態數組創建
- 可變參數列表
- 枚舉類型
- 本章小結
- 第七章 封裝
- 包的概念
- 代碼組織
- 創建獨一無二的包名
- 沖突
- 定制工具庫
- 使用 import 改變行為
- 使用包的忠告
- 訪問權限修飾符
- 包訪問權限
- public: 接口訪問權限
- 默認包
- private: 你無法訪問
- protected: 繼承訪問權限
- 包訪問權限 Vs Public 構造器
- 接口和實現
- 類訪問權限
- 本章小結
- 第八章 復用
- 組合語法
- 繼承語法
- 初始化基類
- 帶參數的構造函數
- 委托
- 結合組合與繼承
- 保證適當的清理
- 名稱隱藏
- 組合與繼承的選擇
- protected
- 向上轉型
- 再論組合和繼承
- final關鍵字
- final 數據
- 空白 final
- final 參數
- final 方法
- final 和 private
- final 類
- final 忠告
- 類初始化和加載
- 繼承和初始化
- 本章小結
- 第九章 多態
- 向上轉型回顧
- 忘掉對象類型
- 轉機
- 方法調用綁定
- 產生正確的行為
- 可擴展性
- 陷阱:“重寫”私有方法
- 陷阱:屬性與靜態方法
- 構造器和多態
- 構造器調用順序
- 繼承和清理
- 構造器內部多態方法的行為
- 協變返回類型
- 使用繼承設計
- 替代 vs 擴展
- 向下轉型與運行時類型信息
- 本章小結
- 第十章 接口
- 抽象類和方法
- 接口創建
- 默認方法
- 多繼承
- 接口中的靜態方法
- Instrument 作為接口
- 抽象類和接口
- 完全解耦
- 多接口結合
- 使用繼承擴展接口
- 結合接口時的命名沖突
- 接口適配
- 接口字段
- 初始化接口中的字段
- 接口嵌套
- 接口和工廠方法模式
- 本章小結
- 第十一章 內部類
- 創建內部類
- 鏈接外部類
- 使用 .this 和 .new
- 內部類與向上轉型
- 內部類方法和作用域
- 匿名內部類
- 嵌套類
- 接口內部的類
- 從多層嵌套類中訪問外部類的成員
- 為什么需要內部類
- 閉包與回調
- 內部類與控制框架
- 繼承內部類
- 內部類可以被覆蓋么?
- 局部內部類
- 內部類標識符
- 本章小結
- 第十二章 集合
- 泛型和類型安全的集合
- 基本概念
- 添加元素組
- 集合的打印
- 迭代器Iterators
- ListIterator
- 鏈表LinkedList
- 堆棧Stack
- 集合Set
- 映射Map
- 隊列Queue
- 優先級隊列PriorityQueue
- 集合與迭代器
- for-in和迭代器
- 適配器方法慣用法
- 本章小結
- 簡單集合分類
- 第十三章 函數式編程
- 新舊對比
- Lambda表達式
- 遞歸
- 方法引用
- Runnable接口
- 未綁定的方法引用
- 構造函數引用
- 函數式接口
- 多參數函數式接口
- 缺少基本類型的函數
- 高階函數
- 閉包
- 作為閉包的內部類
- 函數組合
- 柯里化和部分求值
- 純函數式編程
- 本章小結
- 第十四章 流式編程
- 流支持
- 流創建
- 隨機數流
- int 類型的范圍
- generate()
- iterate()
- 流的建造者模式
- Arrays
- 正則表達式
- 中間操作
- 跟蹤和調試
- 流元素排序
- 移除元素
- 應用函數到元素
- 在map()中組合流
- Optional類
- 便利函數
- 創建 Optional
- Optional 對象操作
- Optional 流
- 終端操作
- 數組
- 集合
- 組合
- 匹配
- 查找
- 信息
- 數字流信息
- 本章小結
- 第十五章 異常
- 異常概念
- 基本異常
- 異常參數
- 異常捕獲
- try 語句塊
- 異常處理程序
- 終止與恢復
- 自定義異常
- 異常與記錄日志
- 異常聲明
- 捕獲所有異常
- 多重捕獲
- 棧軌跡
- 重新拋出異常
- 精準的重新拋出異常
- 異常鏈
- Java 標準異常
- 特例:RuntimeException
- 使用 finally 進行清理
- finally 用來做什么?
- 在 return 中使用 finally
- 缺憾:異常丟失
- 異常限制
- 構造器
- Try-With-Resources 用法
- 揭示細節
- 異常匹配
- 其他可選方式
- 歷史
- 觀點
- 把異常傳遞給控制臺
- 把“被檢查的異常”轉換為“不檢查的異常”
- 異常指南
- 本章小結
- 后記:Exception Bizarro World
- 第十六章 代碼校驗
- 測試
- 如果沒有測試過,它就是不能工作的
- 單元測試
- JUnit
- 測試覆蓋率的幻覺
- 前置條件
- 斷言(Assertions)
- Java 斷言語法
- Guava斷言
- 使用斷言進行契約式設計
- 檢查指令
- 前置條件
- 后置條件
- 不變性
- 放松 DbC 檢查或非嚴格的 DbC
- DbC + 單元測試
- 使用Guava前置條件
- 測試驅動開發
- 測試驅動 vs. 測試優先
- 日志
- 日志會給出正在運行的程序的各種信息
- 日志等級
- 調試
- 使用 JDB 調試
- 圖形化調試器
- 基準測試
- 微基準測試
- JMH 的引入
- 剖析和優化
- 優化準則
- 風格檢測
- 靜態錯誤分析
- 代碼重審
- 結對編程
- 重構
- 重構基石
- 持續集成
- 本章小結
- 第十七章 文件
- 文件和目錄路徑
- 選取路徑部分片段
- 路徑分析
- Paths的增減修改
- 目錄
- 文件系統
- 路徑監聽
- 文件查找
- 文件讀寫
- 本章小結
- 第十八章 字符串
- 字符串的不可變
- +的重載與StringBuilder
- 意外遞歸
- 字符串操作
- 格式化輸出
- printf()
- System.out.format()
- Formatter類
- 格式化修飾符
- Formatter轉換
- String.format()
- 一個十六進制轉儲(dump)工具
- 正則表達式
- 基礎
- 創建正則表達式
- 量詞
- CharSequence
- Pattern和Matcher
- find()
- 組(Groups)
- start()和end()
- Pattern標記
- split()
- 替換操作
- 正則表達式與 Java I/O
- 掃描輸入
- Scanner分隔符
- 用正則表達式掃描
- StringTokenizer類
- 本章小結
- 第十九章 類型信息
- 為什么需要 RTTI
- Class對象
- 類字面常量
- 泛化的Class引用
- cast()方法
- 類型轉換檢測
- 使用類字面量
- 遞歸計數
- 一個動態instanceof函數
- 注冊工廠
- 類的等價比較
- 反射:運行時類信息
- 類方法提取器
- 動態代理
- Optional類
- 標記接口
- Mock 對象和樁
- 接口和類型
- 本章小結
- 第二十章 泛型
- 簡單泛型
- 泛型接口
- 泛型方法
- 復雜模型構建
- 泛型擦除
- 補償擦除
- 邊界
- 通配符
- 問題
- 自限定的類型
- 動態類型安全
- 泛型異常
- 混型
- 潛在類型機制
- 對缺乏潛在類型機制的補償
- Java8 中的輔助潛在類型
- 總結:類型轉換真的如此之糟嗎?
- 進階閱讀
- 第二十一章 數組
- 數組特性
- 一等對象
- 返回數組
- 多維數組
- 泛型數組
- Arrays的fill方法
- Arrays的setAll方法
- 增量生成
- 隨機生成
- 泛型和基本數組
- 數組元素修改
- 數組并行
- Arrays工具類
- 數組比較
- 數組拷貝
- 流和數組
- 數組排序
- Arrays.sort()的使用
- 并行排序
- binarySearch二分查找
- parallelPrefix并行前綴
- 本章小結
- 第二十二章 枚舉
- 基本 enum 特性
- 將靜態類型導入用于 enum
- 方法添加
- 覆蓋 enum 的方法
- switch 語句中的 enum
- values 方法的神秘之處
- 實現而非繼承
- 隨機選擇
- 使用接口組織枚舉
- 使用 EnumSet 替代 Flags
- 使用 EnumMap
- 常量特定方法
- 使用 enum 的職責鏈
- 使用 enum 的狀態機
- 多路分發
- 使用 enum 分發
- 使用常量相關的方法
- 使用 EnumMap 進行分發
- 使用二維數組
- 本章小結
- 第二十三章 注解
- 基本語法
- 定義注解
- 元注解
- 編寫注解處理器
- 注解元素
- 默認值限制
- 替代方案
- 注解不支持繼承
- 實現處理器
- 使用javac處理注解
- 最簡單的處理器
- 更復雜的處理器
- 基于注解的單元測試
- 在 @Unit 中使用泛型
- 實現 @Unit
- 本章小結
- 第二十四章 并發編程
- 術語問題
- 并發的新定義
- 并發的超能力
- 并發為速度而生
- 四句格言
- 1.不要這樣做
- 2.沒有什么是真的,一切可能都有問題
- 3.它起作用,并不意味著它沒有問題
- 4.你必須仍然理解
- 殘酷的真相
- 本章其余部分
- 并行流
- 創建和運行任務
- 終止耗時任務
- CompletableFuture類
- 基本用法
- 結合 CompletableFuture
- 模擬
- 異常
- 流異常(Stream Exception)
- 檢查性異常
- 死鎖
- 構造方法非線程安全
- 復雜性和代價
- 本章小結
- 缺點
- 共享內存陷阱
- This Albatross is Big
- 其他類庫
- 考慮為并發設計的語言
- 拓展閱讀
- 第二十五章 設計模式
- 概念
- 單例模式
- 模式分類
- 構建應用程序框架
- 面向實現
- 工廠模式
- 動態工廠
- 多態工廠
- 抽象工廠
- 函數對象
- 命令模式
- 策略模式
- 責任鏈模式
- 改變接口
- 適配器模式(Adapter)
- 外觀模式(Fa?ade)
- 包(Package)作為外觀模式的變體
- 解釋器:運行時的彈性
- 回調
- 多次調度
- 模式重構
- 抽象用法
- 多次派遣
- 訪問者模式
- RTTI的優劣
- 本章小結
- 附錄:補充
- 附錄:編程指南
- 附錄:文檔注釋
- 附錄:對象傳遞和返回
- 附錄:流式IO
- 輸入流類型
- 輸出流類型
- 添加屬性和有用的接口
- 通過FilterInputStream 從 InputStream 讀取
- 通過 FilterOutputStream 向 OutputStream 寫入
- Reader和Writer
- 數據的來源和去處
- 更改流的行為
- 未發生改變的類
- RandomAccessFile類
- IO流典型用途
- 緩沖輸入文件
- 從內存輸入
- 格式化內存輸入
- 基本文件的輸出
- 文本文件輸出快捷方式
- 存儲和恢復數據
- 讀寫隨機訪問文件
- 本章小結
- 附錄:標準IO
- 附錄:新IO
- ByteBuffer
- 數據轉換
- 基本類型獲取
- 視圖緩沖區
- 字節存儲次序
- 緩沖區數據操作
- 緩沖區細節
- 內存映射文件
- 性能
- 文件鎖定
- 映射文件的部分鎖定
- 附錄:理解equals和hashCode方法
- 附錄:集合主題
- 附錄:并發底層原理
- 附錄:數據壓縮
- 附錄:對象序列化
- 附錄:靜態語言類型檢查
- 附錄:C++和Java的優良傳統
- 附錄:成為一名程序員