## 創建和運行任務
如果無法通過并行流實現并發,則必須創建并運行自己的任務。稍后你將看到運行任務的理想Java 8方法是CompletableFuture,但我們將使用更基本的工具介紹概念。
Java并發的歷史始于非常原始和有問題的機制,并且充滿了各種嘗試的改進。這些主要歸入附錄:[低級并發(Appendix: Low-Level Concurrency)](./Appendix-Low-Level-Concurrency.md)。在這里,我們將展示一個規范形式,表示創建和運行任務的最簡單,最好的方法。與并發中的所有內容一樣,存在各種變體,但這些變體要么降級到該附錄,要么超出本書的范圍。
- Tasks and Executors
在Java的早期版本中,你通過直接創建自己的Thread對象來使用線程,甚至將它們子類化以創建你自己的特定“任務線程”對象。你手動調用了構造函數并自己啟動了線程。
創建所有這些線程的開銷變得非常重要,現在不鼓勵采用手動操作方法。在Java 5中,添加了類來為你處理線程池。你可以將任務創建為單獨的類型,然后將其交給ExecutorService以運行該任務,而不是為每種不同類型的任務創建新的Thread子類型。ExecutorService為你管理線程,并且在運行任務后重新循環線程而不是丟棄線程。
首先,我們將創建一個幾乎不執行任務的任務。它“sleep”(暫停執行)100毫秒,顯示其標識符和正在執行任務的線程的名稱,然后完成:
```java
// concurrent/NapTask.java
import onjava.Nap;
public class NapTask implements Runnable {
final int id;
public NapTask(int id) {
this.id = id;
}
@Override
public void run() {
new Nap(0.1);// Seconds
System.out.println(this + " "+
Thread.currentThread().getName());
}
@Override
public String toString() {
return"NapTask[" + id + "]";
}
}
```
這只是一個**Runnable**:一個包含**run()**方法的類。它沒有包含實際運行任務的機制。我們使用**Nap**類中的“sleep”:
```java
// onjava/Nap.java
package onjava;
import java.util.concurrent.*;
public class Nap {
public Nap(double t) { // Seconds
try {
TimeUnit.MILLISECONDS.sleep((int)(1000 * t));
} catch(InterruptedException e){
throw new RuntimeException(e);
}
}
public Nap(double t, String msg) {
this(t);
System.out.println(msg);
}
}
```
為了消除異常處理的視覺干擾,這被定義為實用程序。第二個構造函數在超時時顯示一條消息
對**TimeUnit.MILLISECONDS.sleep()**的調用獲取“當前線程”并在參數中將其置于休眠狀態,這意味著該線程被掛起。這并不意味著底層處理器停止。操作系統將其切換到其他任務,例如在你的計算機上運行另一個窗口。OS任務管理器定期檢查**sleep()**是否超時。當它執行時,線程被“喚醒”并給予更多處理時間。
你可以看到**sleep()**拋出一個受檢的**InterruptedException**;這是原始Java設計中的一個工件,它通過突然斷開它們來終止任務。因為它往往會產生不穩定的狀態,所以后來不鼓勵終止。但是,我們必須在需要或仍然發生終止的情況下捕獲異常。
要執行任務,我們將從最簡單的方法--SingleThreadExecutor開始:
```java
//concurrent/SingleThreadExecutor.java
import java.util.concurrent.*;
import java.util.stream.*;
import onjava.*;
public class SingleThreadExecutor {
public static void main(String[] args) {
ExecutorService exec =
Executors.newSingleThreadExecutor();
IntStream.range(0, 10)
.mapToObj(NapTask::new)
.forEach(exec::execute);
System.out.println("All tasks submitted");
exec.shutdown();
while(!exec.isTerminated()) {
System.out.println(
Thread.currentThread().getName()+
" awaiting termination");
new Nap(0.1);
}
}
}
```
輸出結果:
```
All tasks submitted
main awaiting termination
main awaiting termination
NapTask[0] pool-1-thread-1
main awaiting termination
NapTask[1] pool-1-thread-1
main awaiting termination
NapTask[2] pool-1-thread-1
main awaiting termination
NapTask[3] pool-1-thread-1
main awaiting termination
NapTask[4] pool-1-thread-1
main awaiting termination
NapTask[5] pool-1-thread-1
main awaiting termination
NapTask[6] pool-1-thread-1
main awaiting termination
NapTask[7] pool-1-thread-1
main awaiting termination
NapTask[8] pool-1-thread-1
main awaiting termination
NapTask[9] pool-1-thread-1
```
首先請注意,沒有**SingleThreadExecutor**類。**newSingleThreadExecutor()**是**Executors**中的工廠,它創建特定類型的[^4]
我創建了十個NapTasks并將它們提交給ExecutorService,這意味著它們開始自己運行。然而,在此期間,main()繼續做事。當我運行callexec.shutdown()時,它告訴ExecutorService完成已經提交的任務,但不接受任何新任務。此時,這些任務仍然在運行,因此我們必須等到它們在退出main()之前完成。這是通過檢查exec.isTerminated()來實現的,這在所有任務完成后變為true。
請注意,main()中線程的名稱是main,并且只有一個其他線程pool-1-thread-1。此外,交錯輸出顯示兩個線程確實同時運行。
如果你只是調用exec.shutdown(),程序將完成所有任務。也就是說,不需要**while(!exec.isTerminated())**。
```java
// concurrent/SingleThreadExecutor2.java
import java.util.concurrent.*;
import java.util.stream.*;
public class SingleThreadExecutor2 {
public static void main(String[] args)throws InterruptedException {
ExecutorService exec
=Executors.newSingleThreadExecutor();
IntStream.range(0, 10)
.mapToObj(NapTask::new)
.forEach(exec::execute);
exec.shutdown();
}
}
```
輸出結果:
```
NapTask[0] pool-1-thread-1
NapTask[1] pool-1-thread-1
NapTask[2] pool-1-thread-1
NapTask[3] pool-1-thread-1
NapTask[4] pool-1-thread-1
NapTask[5] pool-1-thread-1
NapTask[6] pool-1-thread-1
NapTask[7] pool-1-thread-1
NapTask[8] pool-1-thread-1
NapTask[9] pool-1-thread-1
```
一旦你callexec.shutdown(),嘗試提交新任務將拋出RejectedExecutionException。
```java
// concurrent/MoreTasksAfterShutdown.java
import java.util.concurrent.*;
public class MoreTasksAfterShutdown {
public static void main(String[] args) {
ExecutorService exec
=Executors.newSingleThreadExecutor();
exec.execute(newNapTask(1));
exec.shutdown();
try {
exec.execute(newNapTask(99));
} catch(RejectedExecutionException e) {
System.out.println(e);
}
}
}
```
輸出結果:
```
java.util.concurrent.RejectedExecutionException: TaskNapTask[99] rejected from java.util.concurrent.ThreadPoolExecutor@4e25154f[Shutting down, pool size = 1,active threads = 1, queued tasks = 0, completed tasks =0]NapTask[1] pool-1-thread-1
```
**exec.shutdown()**的替代方法是**exec.shutdownNow()**,它除了不接受新任務外,還會嘗試通過中斷任務來停止任何當前正在運行的任務。同樣,中斷是錯誤的,容易出錯并且不鼓勵。
- 使用更多線程
使用線程的重點是(幾乎總是)更快地完成任務,那么我們為什么要限制自己使用SingleThreadExecutor呢?查看執行**Executors**的Javadoc,你將看到更多選項。例如CachedThreadPool:
```java
// concurrent/CachedThreadPool.java
import java.util.concurrent.*;
import java.util.stream.*;
public class CachedThreadPool {
public static void main(String[] args) {
ExecutorService exec
=Executors.newCachedThreadPool();
IntStream.range(0, 10)
.mapToObj(NapTask::new)
.forEach(exec::execute);
exec.shutdown();
}
}
```
輸出結果:
```
NapTask[7] pool-1-thread-8
NapTask[4] pool-1-thread-5
NapTask[1] pool-1-thread-2
NapTask[3] pool-1-thread-4
NapTask[0] pool-1-thread-1
NapTask[8] pool-1-thread-9
NapTask[2] pool-1-thread-3
NapTask[9] pool-1-thread-10
NapTask[6] pool-1-thread-7
NapTask[5] pool-1-thread-6
```
當你運行這個程序時,你會發現它完成得更快。這是有道理的,每個任務都有自己的線程,所以它們都并行運行,而不是使用相同的線程來順序運行每個任務。這似乎沒毛病,很難理解為什么有人會使用SingleThreadExecutor。
要理解這個問題,我們需要一個更復雜的任務:
```java
// concurrent/InterferingTask.java
public class InterferingTask implements Runnable {
final int id;
private static Integer val = 0;
public InterferingTask(int id) {
this.id = id;
}
@Override
public void run() {
for(int i = 0; i < 100; i++)
val++;
System.out.println(id + " "+
Thread.currentThread().getName() + " " + val);
}
}
```
每個任務增加val一百次。這似乎很簡單。讓我們用CachedThreadPool嘗試一下:
```java
// concurrent/CachedThreadPool2.java
import java.util.concurrent.*;
import java.util.stream.*;
public class CachedThreadPool2 {
public static void main(String[] args) {
ExecutorService exec
=Executors.newCachedThreadPool();
IntStream.range(0, 10)
.mapToObj(InterferingTask::new)
.forEach(exec::execute);
exec.shutdown();
}
}
```
輸出結果:
```
0 pool-1-thread-1 200
1 pool-1-thread-2 200
4 pool-1-thread-5 300
5 pool-1-thread-6 400
8 pool-1-thread-9 500
9 pool-1-thread-10 600
2 pool-1-thread-3 700
7 pool-1-thread-8 800
3 pool-1-thread-4 900
6 pool-1-thread-7 1000
```
輸出不是我們所期望的,并且從一次運行到下一次運行會有所不同。問題是所有的任務都試圖寫入val的單個實例,并且他們正在踩著彼此的腳趾。我們稱這樣的類是線程不安全的。讓我們看看SingleThreadExecutor會發生什么:
```java
// concurrent/SingleThreadExecutor3.java
import java.util.concurrent.*;
import java.util.stream.*;
public class SingleThreadExecutor3 {
public static void main(String[] args)throws InterruptedException {
ExecutorService exec
=Executors.newSingleThreadExecutor();
IntStream.range(0, 10)
.mapToObj(InterferingTask::new)
.forEach(exec::execute);
exec.shutdown();
}
}
```
輸出結果:
```
0 pool-1-thread-1 100
1 pool-1-thread-1 200
2 pool-1-thread-1 300
3 pool-1-thread-1 400
4 pool-1-thread-1 500
5 pool-1-thread-1 600
6 pool-1-thread-1 700
7 pool-1-thread-1 800
8 pool-1-thread-1 900
9 pool-1-thread-1 1000
```
現在我們每次都得到一致的結果,盡管**InterferingTask**缺乏線程安全性。這是SingleThreadExecutor的主要好處 - 因為它一次運行一個任務,這些任務不會相互干擾,因此強加了線程安全性。這種現象稱為線程封閉,因為在單線程上運行任務限制了它們的影響。線程封閉限制了加速,但可以節省很多困難的調試和重寫。
- 產生結果
因為**InterferingTask**是一個**Runnable**,它沒有返回值,因此只能使用副作用產生結果 - 操縱緩沖值而不是返回結果。副作用是并發編程中的主要問題之一,因為我們看到了**CachedThreadPool2.java**。**InterferingTask**中的**val**被稱為可變共享狀態,這就是問題所在:多個任務同時修改同一個變量會產生競爭。結果取決于首先在終點線上執行哪個任務,并修改變量(以及其他可能性的各種變化)。
避免競爭條件的最好方法是避免可變的共享狀態。我們可以稱之為自私的孩子原則:什么都不分享。
使用**InterferingTask**,最好刪除副作用并返回任務結果。為此,我們創建**Callable**而不是**Runnable**:
```java
// concurrent/CountingTask.java
import java.util.concurrent.*;
public class CountingTask implements Callable<Integer> {
final int id;
public CountingTask(int id) { this.id = id; }
@Override
public Integer call() {
Integer val = 0;
for(int i = 0; i < 100; i++)
val++;
System.out.println(id + " " +
Thread.currentThread().getName() + " " + val);
return val;
}
}
```
**call()完全獨立于所有其他CountingTasks生成其結果**,這意味著沒有可變的共享狀態
**ExecutorService**允許你使用**invokeAll()**啟動集合中的每個Callable:
```java
// concurrent/CachedThreadPool3.java
import java.util.*;
import java.util.concurrent.*;
import java.util.stream.*;
public class CachedThreadPool3 {
public static Integer extractResult(Future<Integer> f) {
try {
return f.get();
} catch(Exception e) {
throw new RuntimeException(e);
}
}
public static void main(String[] args)throws InterruptedException {
ExecutorService exec =
Executors.newCachedThreadPool();
List<CountingTask> tasks =
IntStream.range(0, 10)
.mapToObj(CountingTask::new)
.collect(Collectors.toList());
List<Future<Integer>> futures =
exec.invokeAll(tasks);
Integer sum = futures.stream()
.map(CachedThreadPool3::extractResult)
.reduce(0, Integer::sum);
System.out.println("sum = " + sum);
exec.shutdown();
}
}
```
輸出結果:
```
1 pool-1-thread-2 100
0 pool-1-thread-1 100
4 pool-1-thread-5 100
5 pool-1-thread-6 100
8 pool-1-thread-9 100
9 pool-1-thread-10 100
2 pool-1-thread-3 100
3 pool-1-thread-4 100
6 pool-1-thread-7 100
7 pool-1-thread-8 100
sum = 1000
```
只有在所有任務完成后,**invokeAll()**才會返回一個**Future**列表,每個任務一個**Future**。**Future**是Java 5中引入的機制,允許你提交任務而無需等待它完成。在這里,我們使用**ExecutorService.submit()**:
```java
// concurrent/Futures.java
import java.util.*;
import java.util.concurrent.*;
import java.util.stream.*;
public class Futures {
public static void main(String[] args)throws InterruptedException, ExecutionException {
ExecutorService exec
=Executors.newSingleThreadExecutor();
Future<Integer> f =
exec.submit(newCountingTask(99));
System.out.println(f.get()); // [1]
exec.shutdown();
}
}
```
輸出結果:
```
99 pool-1-thread-1 100
100
```
- [1] 當你的任務在尚未完成的**Future**上調用**get()**時,調用會阻塞(等待)直到結果可用。
但這意味著,在**CachedThreadPool3.java**中,**Future**似乎是多余的,因為**invokeAll()**甚至在所有任務完成之前都不會返回。但是,這里的Future并不用于延遲結果,而是用于捕獲任何可能發生的異常。
還要注意在**CachedThreadPool3.java.get()**中拋出異常,因此**extractResult()**在Stream中執行此提取。
因為當你調用**get()**時,**Future**會阻塞,所以它只能解決等待任務完成才暴露問題。最終,**Futures**被認為是一種無效的解決方案,現在不鼓勵,我們推薦Java 8的**CompletableFuture**,這將在本章后面探討。當然,你仍會在遺留庫中遇到Futures。
我們可以使用并行Stream以更簡單,更優雅的方式解決這個問題:
```java
// concurrent/CountingStream.java
// {VisuallyInspectOutput}
import java.util.*;
import java.util.concurrent.*;
import java.util.stream.*;
public class CountingStream {
public static void main(String[] args) {
System.out.println(
IntStream.range(0, 10)
.parallel()
.mapToObj(CountingTask::new)
.map(ct -> ct.call())
.reduce(0, Integer::sum));
}
}
```
輸出結果:
```
1 ForkJoinPool.commonPool-worker-3 100
8 ForkJoinPool.commonPool-worker-2 100
0 ForkJoinPool.commonPool-worker-6 100
2 ForkJoinPool.commonPool-worker-1 100
4 ForkJoinPool.commonPool-worker-5 100
9 ForkJoinPool.commonPool-worker-7 100
6 main 100
7 ForkJoinPool.commonPool-worker-4 100
5 ForkJoinPool.commonPool-worker-2 100
3 ForkJoinPool.commonPool-worker-3 100
1000
```
這不僅更容易理解,而且我們需要做的就是將 `parallel()` 插入到其他順序操作中,然后一切都在同時運行。
- Lambda和方法引用作為任務
在 **java8** 有了 **lambdas** 和方法引用,你不需要受限于只能使用 **Runnable** 和 **Callable** 。因為 java8 的**lambdas** 和方法引用可以通過匹配方法簽名來使用(即,它支持結構一致性),所以我們可以將非 **Runnable** 或 **Callable** 的參數傳遞給 `ExecutorService` :
```java
// concurrent/LambdasAndMethodReferences.java
import java.util.concurrent.*;
class NotRunnable {
public void go() {
System.out.println("NotRunnable");
}
}
class NotCallable {
public Integer get() {
System.out.println("NotCallable");
return 1;
}
}
public class LambdasAndMethodReferences {
public static void main(String[] args)throws InterruptedException {
ExecutorService exec =
Executors.newCachedThreadPool();
exec.submit(() -> System.out.println("Lambda1"));
exec.submit(new NotRunnable()::go);
exec.submit(() -> {
System.out.println("Lambda2");
return 1;
});
exec.submit(new NotCallable()::get);
exec.shutdown();
}
}
```
輸出結果:
```
Lambda1
NotCallable
NotRunnable
Lambda2
```
這里,前兩個**submit()**調用可以改為調用**execute()**。所有**submit()**調用都返回**Futures**,你可以在后兩次調用的情況下提取結果。
- 譯者的話
- 前言
- 簡介
- 第一章 對象的概念
- 抽象
- 接口
- 服務提供
- 封裝
- 復用
- 繼承
- "是一個"與"像是一個"的關系
- 多態
- 單繼承結構
- 集合
- 對象創建與生命周期
- 異常處理
- 本章小結
- 第二章 安裝Java和本書用例
- 編輯器
- Shell
- Java安裝
- 校驗安裝
- 安裝和運行代碼示例
- 第三章 萬物皆對象
- 對象操縱
- 對象創建
- 數據存儲
- 基本類型的存儲
- 高精度數值
- 數組的存儲
- 代碼注釋
- 對象清理
- 作用域
- 對象作用域
- 類的創建
- 類型
- 字段
- 基本類型默認值
- 方法使用
- 返回類型
- 參數列表
- 程序編寫
- 命名可見性
- 使用其他組件
- static關鍵字
- 小試牛刀
- 編譯和運行
- 編碼風格
- 本章小結
- 第四章 運算符
- 開始使用
- 優先級
- 賦值
- 方法調用中的別名現象
- 算術運算符
- 一元加減運算符
- 遞增和遞減
- 關系運算符
- 測試對象等價
- 邏輯運算符
- 短路
- 字面值常量
- 下劃線
- 指數計數法
- 位運算符
- 移位運算符
- 三元運算符
- 字符串運算符
- 常見陷阱
- 類型轉換
- 截斷和舍入
- 類型提升
- Java沒有sizeof
- 運算符總結
- 本章小結
- 第五章 控制流
- true和false
- if-else
- 迭代語句
- while
- do-while
- for
- 逗號操作符
- for-in 語法
- return
- break 和 continue
- 臭名昭著的 goto
- switch
- switch 字符串
- 本章小結
- 第六章 初始化和清理
- 利用構造器保證初始化
- 方法重載
- 區分重載方法
- 重載與基本類型
- 返回值的重載
- 無參構造器
- this關鍵字
- 在構造器中調用構造器
- static 的含義
- 垃圾回收器
- finalize()的用途
- 你必須實施清理
- 終結條件
- 垃圾回收器如何工作
- 成員初始化
- 指定初始化
- 構造器初始化
- 初始化的順序
- 靜態數據的初始化
- 顯式的靜態初始化
- 非靜態實例初始化
- 數組初始化
- 動態數組創建
- 可變參數列表
- 枚舉類型
- 本章小結
- 第七章 封裝
- 包的概念
- 代碼組織
- 創建獨一無二的包名
- 沖突
- 定制工具庫
- 使用 import 改變行為
- 使用包的忠告
- 訪問權限修飾符
- 包訪問權限
- public: 接口訪問權限
- 默認包
- private: 你無法訪問
- protected: 繼承訪問權限
- 包訪問權限 Vs Public 構造器
- 接口和實現
- 類訪問權限
- 本章小結
- 第八章 復用
- 組合語法
- 繼承語法
- 初始化基類
- 帶參數的構造函數
- 委托
- 結合組合與繼承
- 保證適當的清理
- 名稱隱藏
- 組合與繼承的選擇
- protected
- 向上轉型
- 再論組合和繼承
- final關鍵字
- final 數據
- 空白 final
- final 參數
- final 方法
- final 和 private
- final 類
- final 忠告
- 類初始化和加載
- 繼承和初始化
- 本章小結
- 第九章 多態
- 向上轉型回顧
- 忘掉對象類型
- 轉機
- 方法調用綁定
- 產生正確的行為
- 可擴展性
- 陷阱:“重寫”私有方法
- 陷阱:屬性與靜態方法
- 構造器和多態
- 構造器調用順序
- 繼承和清理
- 構造器內部多態方法的行為
- 協變返回類型
- 使用繼承設計
- 替代 vs 擴展
- 向下轉型與運行時類型信息
- 本章小結
- 第十章 接口
- 抽象類和方法
- 接口創建
- 默認方法
- 多繼承
- 接口中的靜態方法
- Instrument 作為接口
- 抽象類和接口
- 完全解耦
- 多接口結合
- 使用繼承擴展接口
- 結合接口時的命名沖突
- 接口適配
- 接口字段
- 初始化接口中的字段
- 接口嵌套
- 接口和工廠方法模式
- 本章小結
- 第十一章 內部類
- 創建內部類
- 鏈接外部類
- 使用 .this 和 .new
- 內部類與向上轉型
- 內部類方法和作用域
- 匿名內部類
- 嵌套類
- 接口內部的類
- 從多層嵌套類中訪問外部類的成員
- 為什么需要內部類
- 閉包與回調
- 內部類與控制框架
- 繼承內部類
- 內部類可以被覆蓋么?
- 局部內部類
- 內部類標識符
- 本章小結
- 第十二章 集合
- 泛型和類型安全的集合
- 基本概念
- 添加元素組
- 集合的打印
- 迭代器Iterators
- ListIterator
- 鏈表LinkedList
- 堆棧Stack
- 集合Set
- 映射Map
- 隊列Queue
- 優先級隊列PriorityQueue
- 集合與迭代器
- for-in和迭代器
- 適配器方法慣用法
- 本章小結
- 簡單集合分類
- 第十三章 函數式編程
- 新舊對比
- Lambda表達式
- 遞歸
- 方法引用
- Runnable接口
- 未綁定的方法引用
- 構造函數引用
- 函數式接口
- 多參數函數式接口
- 缺少基本類型的函數
- 高階函數
- 閉包
- 作為閉包的內部類
- 函數組合
- 柯里化和部分求值
- 純函數式編程
- 本章小結
- 第十四章 流式編程
- 流支持
- 流創建
- 隨機數流
- int 類型的范圍
- generate()
- iterate()
- 流的建造者模式
- Arrays
- 正則表達式
- 中間操作
- 跟蹤和調試
- 流元素排序
- 移除元素
- 應用函數到元素
- 在map()中組合流
- Optional類
- 便利函數
- 創建 Optional
- Optional 對象操作
- Optional 流
- 終端操作
- 數組
- 集合
- 組合
- 匹配
- 查找
- 信息
- 數字流信息
- 本章小結
- 第十五章 異常
- 異常概念
- 基本異常
- 異常參數
- 異常捕獲
- try 語句塊
- 異常處理程序
- 終止與恢復
- 自定義異常
- 異常與記錄日志
- 異常聲明
- 捕獲所有異常
- 多重捕獲
- 棧軌跡
- 重新拋出異常
- 精準的重新拋出異常
- 異常鏈
- Java 標準異常
- 特例:RuntimeException
- 使用 finally 進行清理
- finally 用來做什么?
- 在 return 中使用 finally
- 缺憾:異常丟失
- 異常限制
- 構造器
- Try-With-Resources 用法
- 揭示細節
- 異常匹配
- 其他可選方式
- 歷史
- 觀點
- 把異常傳遞給控制臺
- 把“被檢查的異常”轉換為“不檢查的異常”
- 異常指南
- 本章小結
- 后記:Exception Bizarro World
- 第十六章 代碼校驗
- 測試
- 如果沒有測試過,它就是不能工作的
- 單元測試
- JUnit
- 測試覆蓋率的幻覺
- 前置條件
- 斷言(Assertions)
- Java 斷言語法
- Guava斷言
- 使用斷言進行契約式設計
- 檢查指令
- 前置條件
- 后置條件
- 不變性
- 放松 DbC 檢查或非嚴格的 DbC
- DbC + 單元測試
- 使用Guava前置條件
- 測試驅動開發
- 測試驅動 vs. 測試優先
- 日志
- 日志會給出正在運行的程序的各種信息
- 日志等級
- 調試
- 使用 JDB 調試
- 圖形化調試器
- 基準測試
- 微基準測試
- JMH 的引入
- 剖析和優化
- 優化準則
- 風格檢測
- 靜態錯誤分析
- 代碼重審
- 結對編程
- 重構
- 重構基石
- 持續集成
- 本章小結
- 第十七章 文件
- 文件和目錄路徑
- 選取路徑部分片段
- 路徑分析
- Paths的增減修改
- 目錄
- 文件系統
- 路徑監聽
- 文件查找
- 文件讀寫
- 本章小結
- 第十八章 字符串
- 字符串的不可變
- +的重載與StringBuilder
- 意外遞歸
- 字符串操作
- 格式化輸出
- printf()
- System.out.format()
- Formatter類
- 格式化修飾符
- Formatter轉換
- String.format()
- 一個十六進制轉儲(dump)工具
- 正則表達式
- 基礎
- 創建正則表達式
- 量詞
- CharSequence
- Pattern和Matcher
- find()
- 組(Groups)
- start()和end()
- Pattern標記
- split()
- 替換操作
- 正則表達式與 Java I/O
- 掃描輸入
- Scanner分隔符
- 用正則表達式掃描
- StringTokenizer類
- 本章小結
- 第十九章 類型信息
- 為什么需要 RTTI
- Class對象
- 類字面常量
- 泛化的Class引用
- cast()方法
- 類型轉換檢測
- 使用類字面量
- 遞歸計數
- 一個動態instanceof函數
- 注冊工廠
- 類的等價比較
- 反射:運行時類信息
- 類方法提取器
- 動態代理
- Optional類
- 標記接口
- Mock 對象和樁
- 接口和類型
- 本章小結
- 第二十章 泛型
- 簡單泛型
- 泛型接口
- 泛型方法
- 復雜模型構建
- 泛型擦除
- 補償擦除
- 邊界
- 通配符
- 問題
- 自限定的類型
- 動態類型安全
- 泛型異常
- 混型
- 潛在類型機制
- 對缺乏潛在類型機制的補償
- Java8 中的輔助潛在類型
- 總結:類型轉換真的如此之糟嗎?
- 進階閱讀
- 第二十一章 數組
- 數組特性
- 一等對象
- 返回數組
- 多維數組
- 泛型數組
- Arrays的fill方法
- Arrays的setAll方法
- 增量生成
- 隨機生成
- 泛型和基本數組
- 數組元素修改
- 數組并行
- Arrays工具類
- 數組比較
- 數組拷貝
- 流和數組
- 數組排序
- Arrays.sort()的使用
- 并行排序
- binarySearch二分查找
- parallelPrefix并行前綴
- 本章小結
- 第二十二章 枚舉
- 基本 enum 特性
- 將靜態類型導入用于 enum
- 方法添加
- 覆蓋 enum 的方法
- switch 語句中的 enum
- values 方法的神秘之處
- 實現而非繼承
- 隨機選擇
- 使用接口組織枚舉
- 使用 EnumSet 替代 Flags
- 使用 EnumMap
- 常量特定方法
- 使用 enum 的職責鏈
- 使用 enum 的狀態機
- 多路分發
- 使用 enum 分發
- 使用常量相關的方法
- 使用 EnumMap 進行分發
- 使用二維數組
- 本章小結
- 第二十三章 注解
- 基本語法
- 定義注解
- 元注解
- 編寫注解處理器
- 注解元素
- 默認值限制
- 替代方案
- 注解不支持繼承
- 實現處理器
- 使用javac處理注解
- 最簡單的處理器
- 更復雜的處理器
- 基于注解的單元測試
- 在 @Unit 中使用泛型
- 實現 @Unit
- 本章小結
- 第二十四章 并發編程
- 術語問題
- 并發的新定義
- 并發的超能力
- 并發為速度而生
- 四句格言
- 1.不要這樣做
- 2.沒有什么是真的,一切可能都有問題
- 3.它起作用,并不意味著它沒有問題
- 4.你必須仍然理解
- 殘酷的真相
- 本章其余部分
- 并行流
- 創建和運行任務
- 終止耗時任務
- CompletableFuture類
- 基本用法
- 結合 CompletableFuture
- 模擬
- 異常
- 流異常(Stream Exception)
- 檢查性異常
- 死鎖
- 構造方法非線程安全
- 復雜性和代價
- 本章小結
- 缺點
- 共享內存陷阱
- This Albatross is Big
- 其他類庫
- 考慮為并發設計的語言
- 拓展閱讀
- 第二十五章 設計模式
- 概念
- 單例模式
- 模式分類
- 構建應用程序框架
- 面向實現
- 工廠模式
- 動態工廠
- 多態工廠
- 抽象工廠
- 函數對象
- 命令模式
- 策略模式
- 責任鏈模式
- 改變接口
- 適配器模式(Adapter)
- 外觀模式(Fa?ade)
- 包(Package)作為外觀模式的變體
- 解釋器:運行時的彈性
- 回調
- 多次調度
- 模式重構
- 抽象用法
- 多次派遣
- 訪問者模式
- RTTI的優劣
- 本章小結
- 附錄:補充
- 附錄:編程指南
- 附錄:文檔注釋
- 附錄:對象傳遞和返回
- 附錄:流式IO
- 輸入流類型
- 輸出流類型
- 添加屬性和有用的接口
- 通過FilterInputStream 從 InputStream 讀取
- 通過 FilterOutputStream 向 OutputStream 寫入
- Reader和Writer
- 數據的來源和去處
- 更改流的行為
- 未發生改變的類
- RandomAccessFile類
- IO流典型用途
- 緩沖輸入文件
- 從內存輸入
- 格式化內存輸入
- 基本文件的輸出
- 文本文件輸出快捷方式
- 存儲和恢復數據
- 讀寫隨機訪問文件
- 本章小結
- 附錄:標準IO
- 附錄:新IO
- ByteBuffer
- 數據轉換
- 基本類型獲取
- 視圖緩沖區
- 字節存儲次序
- 緩沖區數據操作
- 緩沖區細節
- 內存映射文件
- 性能
- 文件鎖定
- 映射文件的部分鎖定
- 附錄:理解equals和hashCode方法
- 附錄:集合主題
- 附錄:并發底層原理
- 附錄:數據壓縮
- 附錄:對象序列化
- 附錄:靜態語言類型檢查
- 附錄:C++和Java的優良傳統
- 附錄:成為一名程序員