<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # Math 本小節總結一些與數學(尤其是數論部分)有關的基礎,主要總結了《挑戰程序設計競賽》第二章。 ### 最大公約數(GCD, Greatest Common Divisor) 常用的方法為輾轉相除法,也稱為歐幾里得算法。不妨設函數`gcd(a, b)`是自然是`a`, `b`的最大公約數,不妨設`a > b`, 則有 a=b×p+qa = b \times p + qa=b×p+q, 那么對于`gcd(b, q)`則是`b`和`q`的最大公約數,也就是說`gcd(b, q)`既能整除`b`, 又能整除`a`(因為 a=b×p+qa = b \times p + qa=b×p+q, `p`是整數),如此反復最后得到`gcd(a, b) = gcd(c, 0)`, 第二個數為0時直接返回`c`. 如果最開始`a < b`, 那么`gcd(b, a % b) = gcd(b, a) = gcd(a, b % a)`. 關于時間復雜度的證明:可以分`a > b/2`和`a < b/2`證明,對數級別的時間復雜度,過程略。 與最大公約數相關的還有最小公倍數(LCM, Lowest Common Multiple), 它們兩者之間的關系為 lcm(a,b)×gcd(a,b)=∣ab∣ lcm(a, b) \times gcd(a, b) = |ab|lcm(a,b)×gcd(a,b)=∣ab∣. ### Java ~~~ public static long gcd(long a, long b) { return (b == 0) ? a : gcd(b, a % b); } ~~~ ### Problem 給定平面上兩個坐標 P1=(x1, y1), P2=(x2,y2), 問線段 P1P2 上除 P1, P2以外還有幾個整數坐標點? #### Solution 問的是線段 P1P2, 故除 P1,P2以外的坐標需在 x1,x2,y1,y2范圍之內,且不包含端點。在兩端點不重合的前提下有: y?y1x?x1=y2?y1x2?x1\frac{y-y_1}{x-x_1}=\frac{y_2 - y_1}{x_2 - x_1}x?x1y?y1=x2?x1y2?y1那么若得知 M=gcd(x2?x1,y2?y1)M = gcd(x_2 - x_1, y_2 - y_1)M=gcd(x2?x1,y2?y1), 則有 x?x1x - x_1x?x1 必為 x2?x1/Mx_2 - x_1 / Mx2?x1/M 的整數倍大小,又因為 x1<x<x2 x_1 < x < x_2x1<x<x2, 故最多有 M?1M - 1M?1個整數坐標點。 ### 擴展歐幾里得算法 求解整系數 xxx 和 yyy 滿足 d=gcd(a,b)=ax+byd = gcd(a, b) = ax + byd=gcd(a,b)=ax+by, 仿照歐幾里得算法,應該要尋找 gcd(b,a%b)=bx′+(a%b)y′gcd(b, a \% b) = bx^\prime + (a \% b)y^\primegcd(b,a%b)=bx′+(a%b)y′. ### Java ~~~ public class Solution { public static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } public static int[] gcdExt(int a, int b) { if (b == 0) { return new int[] {a, 1, 0}; } else { int[] vals = gcdExt(b, a % b); int d = vals[0]; int x = vals[2]; int y = vals[1]; y -= (a / b) * x; return new int[] {d, x, y}; } } public static void main(String[] args) { int a = 4, b = 11; int[] result = gcdExt(a, b); System.out.printf("d = %d, x = %d, y = %d.\n", result[0], result[1], result[2]); } } ~~~ ### Problem 求整數 xxx 和 yyy 使得 ax+by=1ax+by=1ax+by=1. #### Solution 不妨設`gcd(a, b) = M`, 那么有 M(a′x+b′y)=1M(a^\prime x+b^\prime y)=1M(a′x+b′y)=1 ==> a′x+b′y=1/Ma^\prime x+b^\prime y=1/Ma′x+b′y=1/M 如果 M 大于1,由于等式左邊為整數,故等式不成立,所以要想題中等式有解,必有`gcd(a, b) = 1`. **擴展提:題中等式右邊為1,假如為2又會怎樣?** 提示:此時c=k?gcd(a,b),x′=k?x==>c?%?gcd(a,b)==0c = k \cdot gcd(a, b), x^\prime = k\cdot x ==> c\ \%\ gcd(a, b) == 0c=k?gcd(a,b),x′=k?x==>c?%?gcd(a,b)==0, c 為等式右邊的正整數值。詳細推導見 [How to find solutions of linear Diophantine ax + by = c?](http://math.stackexchange.com/questions/20717/how-to-find-solutions-of-linear-diophantine-ax-by-c)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看