# Linked List Cycle II
### Source
- leetcode: [Linked List Cycle II | LeetCode OJ](https://leetcode.com/problems/linked-list-cycle-ii/)
- lintcode: [(103) Linked List Cycle II](http://www.lintcode.com/en/problem/linked-list-cycle-ii/)
~~~
Given a linked list, return the node where the cycle begins. If there is no cycle, return null.
Example
Given -21->10->4->5, tail connects to node index 1,return node 10
Challenge
Follow up:
Can you solve it without using extra space?
~~~
### 題解 - 快慢指針
題 [Linked List Cycle | Data Structure and Algorithm](http://algorithm.yuanbin.me/zh-cn/linked_list/linked_list_cycle.html) 的升級版,題目要求不適用額外空間,則必然還是使用快慢指針解決問題。首先設組成環的節點個數為 rrr, 鏈表中節點個數為 nnn. 首先我們來分析下在鏈表有環時都能推出哪些特性:
1. 快慢指針第一次相遇時快指針比慢指針多走整數個環, 這個容易理解,相遇問題。
1. 每次相遇都在同一個節點。第一次相遇至第二次相遇,快指針需要比慢指針多走一個環的節點個數,而快指針比慢指針多走的步數正好是慢指針自身移動的步數,故慢指針恰好走了一圈回到原點。
從以上兩個容易得到的特性可知,在僅僅知道第一次相遇時的節點還不夠,相遇后如果不改變既有策略則必然找不到環的入口。接下來我們分析下如何從第一次相遇的節點走到環的入口節點。還是讓我們先從實際例子出發,以下圖為例。

`slow`和`fast`節點分別初始化為節點`1`和`2`,假設快慢指針第一次相遇的節點為`0`, 對應于環中的第`i`個節點 CiC_iCi, 那么此時慢指針正好走了 n?r?1+in - r - 1 + in?r?1+i 步,快指針則走了 2?(n?r?1+i)2 \cdot (n - r - 1 + i)2?(n?r?1+i) 步,且存在[1](#): n?r?1+i+1=l?rn - r - 1 + i + 1= l \cdot rn?r?1+i+1=l?r. (之所以在`i`后面加1是因為快指針初始化時多走了一步) 快慢指針第一次相遇時慢指針肯定沒有走完整個環,且慢指針走的步數即為整數個環節點個數,由性質1和性質2可聯合推出。
現在分析下相遇的節點和環的入口節點之間的關聯,要從環中第`i`個節點走到環的入口節點,則按照順時針方向移動[2](#): (l?r?i+1)(l \cdot r - i + 1)(l?r?i+1) 個節點 (lll 為某個非負整數) 即可到達。現在來看看式[1](#)和式[2](#)間的關系。由式[1](#)可以推知 n?r=l?r?in - r = l \cdot r - in?r=l?r?i. 從頭節點走到環的入口節點所走的步數可用 n?rn - rn?r 表示,故在快慢指針第一次相遇時讓另一節點從頭節點出發,慢指針仍從當前位置迭代,第二次相遇時的位置即為環的入口節點!
****> 由于此題快指針初始化為頭節點的下一個節點,故分析起來稍微麻煩些,且在第一次相遇后需要讓慢指針先走一步,否則會出現死循環。
對于該題來說,快慢指針都初始化為頭節點會方便很多,故以下代碼使用頭節點對快慢指針進行初始化。
### C++
~~~
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @return: The node where the cycle begins.
* if there is no cycle, return null
*/
ListNode *detectCycle(ListNode *head) {
if (NULL == head || NULL == head->next) {
return NULL;
}
ListNode *slow = head, *fast = head;
while (NULL != fast && NULL != fast->next) {
fast = fast->next->next;
slow = slow->next;
if (slow == fast) {
fast = head;
while (slow != fast) {
fast = fast->next;
slow = slow->next;
}
return slow;
}
}
return NULL;
}
};
~~~
### 源碼分析
1. 異常處理。
1. 找第一次相遇的節點。
1. 將`fast`置為頭節點,并只走一步,直至快慢指針第二次相遇,返回慢指針所指的節點。
### 復雜度分析
第一次相遇的最壞時間復雜度為 O(n)O(n)O(n), 第二次相遇的最壞時間復雜度為 O(n)O(n)O(n). 故總的時間復雜度近似為 O(n)O(n)O(n), 空間復雜度 O(1)O(1)O(1).
### Reference
- [Linked List Cycle II | 九章算法](http://www.jiuzhang.com/solutions/linked-list-cycle-ii/)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume