# Insertion Sort List
### Source
- leetcode: [Insertion Sort List | LeetCode OJ](https://leetcode.com/problems/insertion-sort-list/)
- lintcode: [(173) Insertion Sort List](http://www.lintcode.com/en/problem/insertion-sort-list/)
~~~
Sort a linked list using insertion sort.
Example
Given 1->3->2->0->null, return 0->1->2->3->null.
~~~
### 題解1 - 從首到尾遍歷
插入排序常見的實現是針對數組的,如前幾章總的的 [Insertion Sort](http://algorithm.yuanbin.me/zh-cn/basics_sorting/insertion_sort.html),但這道題中的排序的數據結構為單向鏈表,故無法再從后往前遍歷比較值的大小了。好在天無絕人之路,我們還可以**從前往后依次遍歷比較和交換。**
由于排序后頭節點不一定,故需要引入 dummy 大法,并以此節點的`next`作為最后返回結果的頭節點,返回的鏈表從`dummy->next`這里開始構建。首先我們每次都從`dummy->next`開始遍歷,依次和上一輪處理到的節點的值進行比較,直至找到不小于上一輪節點值的節點為止,隨后將上一輪節點插入到當前遍歷的節點之前,依此類推。文字描述起來可能比較模糊,大家可以結合以下的代碼在紙上分析下。
### Python
~~~
"""
Definition of ListNode
class ListNode(object):
def __init__(self, val, next=None):
self.val = val
self.next = next
"""
class Solution:
"""
@param head: The first node of linked list.
@return: The head of linked list.
"""
def insertionSortList(self, head):
dummy = ListNode(0)
cur = head
while cur is not None:
pre = dummy
while pre.next is not None and pre.next.val < cur.val:
pre = pre.next
temp = cur.next
cur.next = pre.next
pre.next = cur
cur = temp
return dummy.next
~~~
### C++
~~~
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @return: The head of linked list.
*/
ListNode *insertionSortList(ListNode *head) {
ListNode *dummy = new ListNode(0);
ListNode *cur = head;
while (cur != NULL) {
ListNode *pre = dummy;
while (pre->next != NULL && pre->next->val < cur->val) {
pre = pre->next;
}
ListNode *temp = cur->next;
cur->next = pre->next;
pre->next = cur;
cur = temp;
}
return dummy->next;
}
};
~~~
### Java
~~~
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
public class Solution {
public ListNode insertionSortList(ListNode head) {
ListNode dummy = new ListNode(0);
ListNode cur = head;
while (cur != null) {
ListNode pre = dummy;
while (pre.next != null && pre.next.val < cur.val) {
pre = pre.next;
}
ListNode temp = cur.next;
cur.next = pre.next;
pre.next = cur;
cur = temp;
}
return dummy.next;
}
}
~~~
### 源碼分析
1. 新建 dummy 節點,用以處理最終返回結果中頭節點不定的情況。
1. 以`cur`表示當前正在處理的節點,在從 dummy 開始遍歷前保存`cur`的下一個節點作為下一輪的`cur`.
1. 以`pre`作為遍歷節點,直到找到不小于`cur`值的節點為止。
1. 將`pre`的下一個節點`pre->next`鏈接到`cur->next`上,`cur`鏈接到`pre->next`, 最后將`cur`指向下一個節點。
1. 返回`dummy->next`最為最終頭節點。
Python 的實現在 lintcode 上會提示 [TLE](# "Time Limit Exceeded 的簡稱。你的程序在 OJ 上的運行時間太長了,超過了對應題目的時間限制。"), leetcode 上勉強通過,這里需要注意的是采用`if A is not None:`的效率要比`if A:`高,不然 leetcode 上也過不了。具體原因可參考 [Stack Overflow](http://stackoverflow.com/questions/7816363/if-a-vs-if-a-is-not-none) 上的討論。
### 復雜度分析
最好情況:原鏈表已經有序,每得到一個新節點都需要 iii 次比較和一次交換, 時間復雜度為 1/2O(n2)+O(n)1/2O(n^2) + O(n)1/2O(n2)+O(n), 使用了 dummy 和 pre, 空間復雜度近似為 O(1)O(1)O(1).
最壞情況:原鏈表正好逆序,由于是單向鏈表只能從前往后依次遍歷,交換和比較次數均為 1/2O(n2)1/2 O(n^2)1/2O(n2), 總的時間復雜度近似為 O(n2)O(n^2)O(n2), 空間復雜度同上,近似為 O(1)O(1)O(1).
### 題解2 - 優化有序鏈表
從題解1的復雜度分析可以看出其在最好情況下時間復雜度都為 O(n2)O(n^2)O(n2) ,這顯然是需要優化的。 仔細觀察可發現最好情況下的比較次數 是可以優化到 O(n)O(n)O(n) 的。思路自然就是先判斷鏈表是否有序,僅對降序的部分進行處理。優化之后的代碼就沒題解1那么容易寫對了,建議畫個圖自行紙上分析下。
### Python
~~~
"""
Definition of ListNode
class ListNode(object):
def __init__(self, val, next=None):
self.val = val
self.next = next
"""
class Solution:
"""
@param head: The first node of linked list.
@return: The head of linked list.
"""
def insertionSortList(self, head):
dummy = ListNode(0)
dummy.next = head
cur = head
while cur is not None:
if cur.next is not None and cur.next.val < cur.val:
# find insert position for smaller(cur->next)
pre = dummy
while pre.next is not None and pre.next.val < cur.next.val:
pre = pre.next
# insert cur->next after pre
temp = pre.next
pre.next = cur.next
cur.next = cur.next.next
pre.next.next = temp
else:
cur = cur.next
return dummy.next
~~~
### C++
~~~
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @return: The head of linked list.
*/
ListNode *insertionSortList(ListNode *head) {
ListNode *dummy = new ListNode(0);
dummy->next = head;
ListNode *cur = head;
while (cur != NULL) {
if (cur->next != NULL && cur->next->val < cur->val) {
ListNode *pre = dummy;
// find insert position for smaller(cur->next)
while (pre->next != NULL && pre->next->val <= cur->next->val) {
pre = pre->next;
}
// insert cur->next after pre
ListNode *temp = pre->next;
pre->next = cur->next;
cur->next = cur->next->next;
pre->next->next = temp;
} else {
cur = cur->next;
}
}
return dummy->next;
}
};
~~~
### Java
~~~
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
public class Solution {
public ListNode insertionSortList(ListNode head) {
ListNode dummy = new ListNode(0);
dummy.next = head;
ListNode cur = head;
while (cur != null) {
if (cur.next != null && cur.next.val < cur.val) {
// find insert position for smaller(cur->next)
ListNode pre = dummy;
while (pre.next != null && pre.next.val < cur.next.val) {
pre = pre.next;
}
// insert cur->next after pre
ListNode temp = pre.next;
pre.next = cur.next;
cur.next = cur.next.next;
pre.next.next = temp;
} else {
cur = cur.next;
}
}
return dummy.next;
}
}
~~~
### 源碼分析
1. 新建 dummy 節點并將其`next` 指向`head`
1. 分情況討論,僅需要處理逆序部分。
1. 由于已經確認鏈表逆序,故僅需將較小值(`cur->next`而不是`cur`)的節點插入到鏈表的合適位置。
1. 將`cur->next`插入到`pre`之后,這里需要四個步驟,需要特別小心!

如上圖所示,將`cur->next`插入到`pre`節點后大致分為3個步驟。
### 復雜度分析
最好情況下時間復雜度降至 O(n)O(n)O(n), 其他同題解1.
### Reference
- [Explained C++ solution (24ms) - Leetcode Discuss](https://leetcode.com/discuss/37574/explained-c-solution-24ms)
- [Insertion Sort List - 九章算法](http://www.jiuzhang.com/solutions/insertion-sort-list/)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume