# Binary Tree Postorder Traversal
### Source
- leetcode: [Binary Tree Postorder Traversal | LeetCode OJ](https://leetcode.com/problems/binary-tree-postorder-traversal/)
- lintcode: [(68) Binary Tree Postorder Traversal](http://www.lintcode.com/en/problem/binary-tree-postorder-traversal/)
~~~
Given a binary tree, return the postorder traversal of its nodes' values.
Example
Given binary tree {1,#,2,3},
1
\
2
/
3
return [3,2,1].
Challenge
Can you do it without recursion?
~~~
### 題解1 - 遞歸
首先使用遞歸便于理解。
### Python - Divide and Conquer
~~~
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @return {integer[]}
def postorderTraversal(self, root):
if root is None:
return []
else:
return self.postorderTraversal(root.left) +\
self.postorderTraversal(root.right) + [root.val]
~~~
### C++ - Traversal
~~~
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
/**
* @param root: The root of binary tree.
* @return: Postorder in vector which contains node values.
*/
public:
vector<int> postorderTraversal(TreeNode *root) {
vector<int> result;
traverse(root, result);
return result;
}
private:
void traverse(TreeNode *root, vector<int> &ret) {
if (root == NULL) {
return;
}
traverse(root->left, ret);
traverse(root->right, ret);
ret.push_back(root->val);
}
};
~~~
### Java - Divide and Conquer
~~~
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
if (root != null) {
List<Integer> left = postorderTraversal(root.left);
result.addAll(left);
List<Integer> right = postorderTraversal(root.right);
result.addAll(right);
result.add(root.val);
}
return result;
}
}
~~~
### 源碼分析
遞歸版的太簡單了,沒啥好說的,注意入棧順序。
### 復雜度分析
時間復雜度近似為 O(n)O(n)O(n).
### 題解2 - 迭代
使用遞歸寫后序遍歷那是相當的簡單,我們來個不使用遞歸的迭代版。整體思路仍然為「左右根」,那么怎么才能知道什么時候該訪問根節點呢?問題即轉化為如何保證左右子節點一定先被訪問到?由于入棧之后左右節點已無法區分,因此需要區分左右子節點是否被訪問過(加入到最終返回結果中)。除了有左右節點的情況,根節點也可能沒有任何子節點,此時也可直接將其值加入到最終返回結果中。
### Python
~~~
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @return {integer[]}
def postorderTraversal(self, root):
result = []
if root is None:
return result
s = []
# previously traversed node
prev = None
s.append(root)
while s:
curr = s[-1]
noChild = curr.left is None and curr.right is None
childVisited = (prev is not None) and \
(curr.left == prev or curr.right == prev)
if noChild or childVisited:
result.append(curr.val)
s.pop()
prev = curr
else:
if curr.right is not None:
s.append(curr.right)
if curr.left is not None:
s.append(curr.left)
return result
~~~
### C++
~~~
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> result;
if (root == NULL) return result;
TreeNode *prev = NULL;
stack<TreeNode *> s;
s.push(root);
while (!s.empty()) {
TreeNode *curr = s.top();
bool noChild = false;
if (curr->left == NULL && curr->right == NULL) {
noChild = true;
}
bool childVisited = false;
if (prev != NULL && (curr->left == prev || curr->right == prev)) {
childVisited = true;
}
// traverse
if (noChild || childVisited) {
result.push_back(curr->val);
s.pop();
prev = curr;
} else {
if (curr->right != NULL) s.push(curr->right);
if (curr->left != NULL) s.push(curr->left);
}
}
return result;
}
};
~~~
### Java
~~~
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
if (root == null) return result;
Stack<TreeNode> s = new Stack<TreeNode>();
s.push(root);
TreeNode prev = null;
while (!s.empty()) {
TreeNode curr = s.peek();
boolean noChild = false;
if (curr.left == null && curr.right == null) {
noChild = true;
}
boolean childVisited = false;
if (prev != null && (curr.left == prev || curr.right == prev)) {
childVisited = true;
}
// traverse
if (noChild || childVisited) {
result.add(curr.val);
s.pop();
prev = curr;
} else {
if (curr.right != null) s.push(curr.right);
if (curr.left != null) s.push(curr.left);
}
}
return result;
}
}
~~~
### 源碼分析
遍歷順序為『左右根』,判斷根節點是否應該從棧中剔除有兩種條件,一為無子節點,二為子節點已遍歷過。判斷子節點是否遍歷過需要排除`prev == null` 的情況,因為 prev 初始化為 null.
**將遞歸寫成迭代的難點在于如何在迭代中體現遞歸本質及邊界條件的確立,可使用簡單示例和紙上畫出棧調用圖輔助分析。**
### 復雜度分析
最壞情況下棧內存儲所有節點,空間復雜度近似為 O(n)O(n)O(n), 每個節點遍歷兩次或以上,時間復雜度近似為 O(n)O(n)O(n).
### 題解3 - Iterative
要想得到『左右根』的后序遍歷結果,我們發現只需將『根右左』的結果轉置即可,而先序遍歷通常為『根左右』,故改變『左右』的順序即可,所以如此一來后序遍歷的非遞歸實現起來就非常簡單了。
### C++
~~~
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
/**
* @param root: The root of binary tree.
* @return: Postorder in vector which contains node values.
*/
public:
vector<int> postorderTraversal(TreeNode *root) {
vector<int> result;
if (root == NULL) return result;
stack<TreeNode*> s;
s.push(root);
while (!s.empty()) {
TreeNode *node = s.top();
s.pop();
result.push_back(node->val);
// root, right, left => left, right, root
if (node->left != NULL) s.push(node->left);
if (node->right != NULL) s.push(node->right);
}
// reverse
std::reverse(result.begin(), result.end());
return result;
}
};
~~~
### Java
~~~
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @param root: The root of binary tree.
* @return: Postorder in ArrayList which contains node values.
*/
public ArrayList<Integer> postorderTraversal(TreeNode root) {
ArrayList<Integer> result = new ArrayList<Integer>();
if (root == null) return result;
Deque<TreeNode> stack = new ArrayDeque<TreeNode>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode node = stack.pop();
result.add(node.val);
if (node.left != null) stack.push(node.left);
if (node.right != null) stack.push(node.right);
}
Collections.reverse(result);
return result;
}
}
~~~
### 源碼分析
注意入棧的順序和最后轉置即可。
### 復雜度分析
同先序遍歷。
### Reference
- [[leetcode]Binary Tree Postorder Traversal @ Python - 南郭子綦](http://www.cnblogs.com/zuoyuan/p/3720846.html) - 解釋清晰
- [更簡單的非遞歸遍歷二叉樹的方法](http://zisong.me/post/suan-fa/geng-jian-dan-de-bian-li-er-cha-shu-de-fang-fa) - 比較新穎和簡潔的實現
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume