# Jump Game II
### Source
- lintcode: [(117) Jump Game II](http://www.lintcode.com/en/problem/jump-game-ii/)
~~~
Given an array of non-negative integers,
you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
Example
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2.
(Jump 1 step from index 0 to 1, then 3 steps to the last index.)
~~~
### 題解(自頂向下-動態規劃)
首先來看看使用動態規劃的解法,由于復雜度較高在A元素較多時會出現[TLE](# "Time Limit Exceeded 的簡稱。你的程序在 OJ 上的運行時間太長了,超過了對應題目的時間限制。"),因為時間復雜度接近 O(n3)O(n^3)O(n3). 工作面試中給出動規的實現就挺好了。
1. State: f[i] 從起點跳到這個位置最少需要多少步
1. Function: f[i] = MIN(f[j]+1, j < i && j + A[j] >= i) 取出所有能從j到i中的最小值
1. Initialization: f[0] = 0,即一個元素時不需移位即可到達
1. Answer: f[n-1]
### C++ Dynamic Programming
~~~
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return -1;
}
const int N = A.size() - 1;
vector<int> steps(N, INT_MAX);
steps[0] = 0;
for (int i = 1; i != N + 1; ++i) {
for (int j = 0; j != i; ++j) {
if ((steps[j] != INT_MAX) && (j + A[j] >= i)) {
steps[i] = steps[j] + 1;
break;
}
}
}
return steps[N];
}
};
~~~
### 源碼分析
狀態轉移方程為
~~~
if ((steps[j] != INT_MAX) && (j + A[j] >= i)) {
steps[i] = steps[j] + 1;
break;
}
~~~
其中break即體現了MIN操作,最開始滿足條件的j即為最小步數。
### 題解(貪心法-自底向上)
使用動態規劃解Jump Game的題復雜度均較高,這里可以使用貪心法達到線性級別的復雜度。
貪心法可以使用自底向上或者自頂向下,首先看看我最初使用自底向上做的。對A數組遍歷,找到最小的下標`min_index`,并在下一輪中用此`min_index`替代上一次的`end`, 直至`min_index`為0,返回最小跳數`jumps`。以下的實現有個 bug,細心的你能發現嗎?
### C++ greedy from bottom to top, bug version
~~~
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return -1;
}
const int N = A.size() - 1;
int jumps = 0;
int last_index = N;
int min_index = N;
for (int i = N - 1; i >= 0; --i) {
if (i + A[i] >= last_index) {
min_index = i;
}
if (0 == min_index) {
return ++jumps;
}
if ((0 == i) && (min_index < last_index)) {
++jumps;
last_index = min_index;
i = last_index - 1;
}
}
return jumps;
}
};
~~~
### 源碼分析
使用jumps記錄最小跳數,last_index記錄離終點最遠的坐標,min_index記錄此次遍歷過程中找到的最小下標。
以上的bug在于當min_index為1時,i = 0, for循環中仍有--i,因此退出循環,無法進入`if (0 == min_index)`語句,因此返回的結果會小1個。
### C++ greedy, from bottom to top
~~~
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return 0;
}
const int N = A.size() - 1;
int jumps = 0, end = N, min_index = N;
while (end > 0) {
for (int i = end - 1; i >= 0; --i) {
if (i + A[i] >= end) {
min_index = i;
}
}
if (min_index < end) {
++jumps;
end = min_index;
} else {
// cannot jump to the end
return -1;
}
}
return jumps;
}
};
~~~
### 源碼分析
之前的 bug version 代碼實在是太丑陋了,改寫了個相對優雅的實現,加入了是否能到達終點的判斷。在更新`min_index`的內循環中也可改為如下效率更高的方式:
~~~
for (int i = 0; i != end; ++i) {
if (i + A[i] >= end) {
min_index = i;
break;
}
}
~~~
### 題解(貪心法-自頂向下)
看過了自底向上的貪心法,我們再來瞅瞅自頂向下的實現。自頂向下使用`farthest`記錄當前坐標出發能到達的最遠坐標,遍歷當前`start`與`end`之間的坐標,若`i+A[i] > farthest`時更新`farthest`(尋找最小跳數),當前循環遍歷結束時遞推`end = farthest`。`end >= A.size() - 1`時退出循環,返回最小跳數。
### C++
~~~
/**
* http://www.jiuzhang.com/solutions/jump-game-ii/
*/
class Solution {
public:
/**
* @param A: A list of lists of integers
* @return: An integer
*/
int jump(vector<int> A) {
if (A.empty()) {
return 0;
}
const int N = A.size() - 1;
int start = 0, end = 0, jumps = 0;
while (end < N) {
int farthest = end;
for (int i = start; i <= end; ++i) {
if (i + A[i] >= farthest) {
farthest = i + A[i];
}
}
if (end < farthest) {
++jumps;
start = end + 1;
end = farthest;
} else {
// cannot jump to the end
return -1;
}
}
return jumps;
}
};
~~~
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume