# Longest Increasing Continuous subsequence II
### Source
- lintcode: [(398) Longest Increasing Continuous subsequence II](http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence-ii/)
### Problem
Give you an integer matrix (with row size n, column size m),find the longest increasing continuous subsequence in this matrix. (The definition of the longest increasing continuous subsequence here can start at any row or column and go up/down/right/left any direction).
#### Example
Given a matrix:
~~~
[
[1 ,2 ,3 ,4 ,5],
[16,17,24,23,6],
[15,18,25,22,7],
[14,19,20,21,8],
[13,12,11,10,9]
]
~~~
return 25
#### Challenge
O(nm) time and memory.
### 題解
題 [Longest Increasing Continuous subsequence](http://algorithm.yuanbin.me/zh-cn/dynamic_programming/longest_increasing_continuous_subsequence.html) 的 follow up, 變成一道比較難的題了。從之前的一維 DP 變為現在的二維 DP,自增方向可從上下左右四個方向進行。需要結合 [DFS](# "Depth-First Search, 深度優先搜索") 和動態規劃兩大重量級武器。
根據二維 DP 的通用方法,我們首先需要關注狀態及狀態轉移方程,狀態轉移方程相對明顯一點,即上下左右四個方向的元素值遞增關系,根據此轉移方程,**不難得到我們需要的狀態為`dp[i][j]`——表示從坐標`(i, j)`出發所得到的最長連續遞增子序列。**根據狀態及轉移方程我們不難得到初始化應該為1或者0,這要視具體情況而定。
這里我們可能會糾結的地方在于自增的方向,平時見到的二維 DP 自增方向都是從小到大,而這里的增長方向卻不一定。**這里需要突破思維定勢的地方在于我們可以不理會從哪個方向自增,只需要處理自增和邊界條件即可。**根據轉移方程可以知道使用遞歸來解決是比較好的方式,這里關鍵的地方就在于遞歸的終止條件。比較容易想到的一個遞歸終止條件自然是當前元素是整個矩陣中的最大元素,索引朝四個方向出發都無法自增,因此返回1. 另外可以預想到的是如果不進行記憶化存儲,遞歸過程中自然會產生大量重復計算,根據記憶化存儲的通用方法,這里可以以結果是否為0(初始化為0時)來進行區分。
### Java
~~~
public class Solution {
/**
* @param A an integer matrix
* @return an integer
*/
public int longestIncreasingContinuousSubsequenceII(int[][] A) {
if (A == null || A.length == 0 || A[0].length == 0) return 0;
int lics = 0;
int[][] dp = new int[A.length][A[0].length];
for (int row = 0; row < A.length; row++) {
for (int col = 0; col < A[0].length; col++) {
if (dp[row][col] == 0) {
lics = Math.max(lics, dfs(A, row, col, dp));
}
}
}
return lics;
}
private int dfs(int[][] A, int row, int col, int[][] dp) {
if (dp[row][col] != 0) {
return dp[row][col];
}
// increasing from xxx to up, down, left, right
int up = 0, down = 0, left = 0, right = 0;
// increasing from down to up
if (row > 0 && A[row - 1][col] > A[row][col]) {
up = dfs(A, row - 1, col, dp);
}
// increasing from up to down
if (row + 1 < A.length && A[row + 1][col] > A[row][col]) {
down = dfs(A, row + 1, col, dp);
}
// increasing from right to left
if (col > 0 && A[row][col - 1] > A[row][col]) {
left = dfs(A, row, col - 1, dp);
}
// increasing from left to right
if (col + 1 < A[0].length && A[row][col + 1] > A[row][col]) {
right = dfs(A, row, col + 1, dp);
}
// return maximum of up, down, left, right
dp[row][col] = 1 + Math.max(Math.max(up, down), Math.max(left, right));
return dp[row][col];
}
}
~~~
### 源碼分析
[dfs](# "Depth-First Search, 深度優先搜索") 遞歸最深一層即矩陣中最大的元素處,然后逐層返回。這道題對狀態`dp[i][j]`的理解很重要,否則會陷入對上下左右四個方向的迷霧中。
### 復雜度分析
由于引入了記憶化存儲,時間復雜度逼近 O(mn)O(mn)O(mn), 空間復雜度 O(mn)O(mn)O(mn).
### Reference
- [Lintcode: Longest Increasing Continuous subsequence II | codesolutiony](https://codesolutiony.wordpress.com/2015/05/25/lintcode-longest-increasing-continuous-subsequence-ii/)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume