# Convert Integer A to Integer B
### Source
- CC150, lintcode: [(181) Convert Integer A to Integer B](http://www.lintcode.com/en/problem/convert-integer-a-to-integer-b/)
~~~
Determine the number of bits required to convert integer A to integer B
Example
Given n = 31, m = 14,return 2
(31)10=(11111)2
(14)10=(01110)2
~~~
### 題解
比較兩個數不同的比特位個數,顯然容易想到可以使用異或處理兩個整數,相同的位上為0,不同的位上為1,故接下來只需將異或后1的個數求出即可。容易想到的方法是移位后和1按位與得到最低位的結果,使用計數器記錄這一結果,直至最后操作數為0時返回最終值。這種方法需要遍歷元素的每一位,有咩有更為高效的做法呢?還記得之前做過的 [O1 Check Power of 2](http://algorithm.yuanbin.me/zh-cn/math_and_bit_manipulation/o1_check_power_of_2.html) 嗎?`x & (x - 1)`既然可以檢查2的整數次冪,那么如何才能進一步得到所有1的個數呢?——將異或得到的數分拆為若干個2的整數次冪,計算得到有多少個2的整數次冪即可。
以上的分析過程對于正數來說是毫無問題的,但問題就在于如果出現了負數如何破?不確定的時候就來個實例測測看,以-2為例,(-2) & (-2 - 1)的計算如下所示(簡單起見這里以8位為準):
~~~
11111110 <==> -2 -2 <==> 11111110
+ &
11111111 <==> -1 -3 <==> 11111101
= =
11111101 11111100
~~~
細心的你也許發現了對于負數來說,其表現也是我們需要的——`x & (x - 1)`的含義即為將二進制比特位的值為1的最低位置零。逐步迭代直至最終值為0時返回。
C/C++ 和 Java 中左溢出時會直接將高位丟棄,正好方便了我們的計算,但是在 Python 中就沒這么幸運了,因為溢出時會自動轉換類型,Orz... 所以使用 Python 時需要對負數專門處理,轉換為求其補數中0的個數。
### Python
~~~
class Solution:
"""
@param a, b: Two integer
return: An integer
"""
def bitSwapRequired(self, a, b):
count = 0
a_xor_b = a ^ b
neg_flag = False
if a_xor_b < 0:
a_xor_b = abs(a_xor_b) - 1
neg_flag = True
while a_xor_b > 0:
count += 1
a_xor_b &= (a_xor_b - 1)
# bit_wise = 32
if neg_flag:
count = 32 - count
return count
~~~
### C++
~~~
class Solution {
public:
/**
*@param a, b: Two integer
*return: An integer
*/
int bitSwapRequired(int a, int b) {
int count = 0;
int a_xor_b = a ^ b;
while (a_xor_b != 0) {
++count;
a_xor_b &= (a_xor_b - 1);
}
return count;
}
};
~~~
### Java
~~~
class Solution {
/**
*@param a, b: Two integer
*return: An integer
*/
public static int bitSwapRequired(int a, int b) {
int count = 0;
int a_xor_b = a ^ b;
while (a_xor_b != 0) {
++count;
a_xor_b &= (a_xor_b - 1);
}
return count;
}
};
~~~
### 源碼分析
Python 中 int 溢出時會自動變為 long 類型,故處理負數時需要求補數中0的個數,間接求得原異或得到的數中1的個數。
考慮到負數的可能,C/C++, Java 中循環終止條件為`a_xor_b != 0`,而不是`a_xor_b > 0`.
### 復雜度分析
取決于異或后數中1的個數,`O(max(ones in a ^ b))`.
關于 Python 中位運算的一些坑總結在參考鏈接中。
### Reference
- [BitManipulation - Python Wiki](https://wiki.python.org/moin/BitManipulation)
- [5. Expressions — Python 2.7.10rc0 documentation](https://docs.python.org/2/reference/expressions.html#shifting)
- [Python之位移操作符所帶來的困惑 - 旁觀者 - 博客園](http://www.cnblogs.com/zhengyun_ustc/archive/2009/10/14/shifting.html)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume