# Subarray Sum K
### Source
- GeeksforGeeks: [Find subarray with given sum - GeeksforGeeks](http://www.geeksforgeeks.org/find-subarray-with-given-sum/)
~~~
Given an nonnegative integer array, find a subarray where the sum of numbers is k.
Your code should return the index of the first number and the index of the last number.
Example
Given [1, 4, 20, 3, 10, 5], sum k = 33, return [2, 4].
~~~
### 題解1 - 哈希表
題 [Zero Sum Subarray | Data Structure and Algorithm](http://algorithm.yuanbin.me/zh-cn/integer_array/zero_sum_subarray.html) 的升級版,這道題求子串和為 K 的索引。首先我們可以考慮使用時間復雜度相對較低的哈希表解決。前一道題的核心約束條件為 f(i1)?f(i2)=0f(i_1) - f(i_2) = 0f(i1)?f(i2)=0,這道題則變為 f(i1)?f(i2)=kf(i_1) - f(i_2) = kf(i1)?f(i2)=k
### C++
~~~
#include <iostream>
#include <vector>
#include <map>
using namespace std;
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySum(vector<int> nums, int k){
vector<int> result;
// curr_sum for the first item, index for the second item
// unordered_map<int, int> hash;
map<int, int> hash;
hash[0] = 0;
int curr_sum = 0;
for (int i = 0; i != nums.size(); ++i) {
curr_sum += nums[i];
if (hash.find(curr_sum - k) != hash.end()) {
result.push_back(hash[curr_sum - k]);
result.push_back(i);
return result;
} else {
hash[curr_sum] = i + 1;
}
}
return result;
}
};
int main(int argc, char *argv[])
{
int int_array1[] = {1, 4, 20, 3, 10, 5};
int int_array2[] = {1, 4, 0, 0, 3, 10, 5};
vector<int> vec_array1;
vector<int> vec_array2;
for (int i = 0; i != sizeof(int_array1) / sizeof(int); ++i) {
vec_array1.push_back(int_array1[i]);
}
for (int i = 0; i != sizeof(int_array2) / sizeof(int); ++i) {
vec_array2.push_back(int_array2[i]);
}
Solution solution;
vector<int> result1 = solution.subarraySum(vec_array1, 33);
vector<int> result2 = solution.subarraySum(vec_array2, 7);
cout << "result1 = [" << result1[0] << " ," << result1[1] << "]" << endl;
cout << "result2 = [" << result2[0] << " ," << result2[1] << "]" << endl;
return 0;
}
~~~
### 源碼分析
與 Zero Sum Subarray 題的變化之處有兩個地方,第一個是判斷是否存在哈希表中時需要使用`hash.find(curr_sum - k)`, 最終返回結果使用`result.push_back(hash[curr_sum - k]);`而不是`result.push_back(hash[curr_sum]);`
### 復雜度分析
略,見 [Zero Sum Subarray | Data Structure and Algorithm](http://algorithm.yuanbin.me/zh-cn/integer_array/zero_sum_subarray.html)
### 題解2 - 利用單調函數特性
不知道細心的你是否發現這道題的隱含條件——**nonnegative integer array**, 這也就意味著子串和函數 f(i)f(i)f(i) 為「單調不減」函數。單調函數在數學中可是重點研究的對象,那么如何將這種單調性引入本題中呢?不妨設 i2>i1i_2 > i_1i2>i1, 題中的解等價于尋找 f(i2)?f(i1)=kf(i_2) - f(i_1) = kf(i2)?f(i1)=k, 則必有 f(i2)≥kf(i_2) \geq kf(i2)≥k.
我們首先來舉個實際例子幫助分析,以整數數組 {1, 4, 20, 3, 10, 5} 為例,要求子串和為33的索引值。首先我們可以構建如下表所示的子串和 f(i)f(i)f(i).
| f(i)f(i)f(i) | 1 | 5 | 25 | 28 | 38 |
|-----|-----|-----|-----|-----|-----|
| iii | 0 | 1 | 2 | 3 | 4 |
要使部分子串和為33,則要求的第二個索引值必大于等于4,如果索引值再繼續往后遍歷,則所得的子串和必大于等于38,進而可以推斷出索引0一定不是解。那現在怎么辦咧?當然是把它扔掉啊!第一個索引值往后遞推,直至小于33時又往后遞推第二個索引值,于是乎這種技巧又可以認為是「兩根指針」。
### C++
~~~
#include <iostream>
#include <vector>
#include <map>
using namespace std;
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySum2(vector<int> &nums, int k){
vector<int> result;
int left_index = 0, curr_sum = 0;
for (int i = 0; i != nums.size(); ++i) {
while (curr_sum > k) {
curr_sum -= nums[left_index];
++left_index;
}
if (curr_sum == k) {
result.push_back(left_index);
result.push_back(i - 1);
return result;
}
curr_sum += nums[i];
}
return result;
}
};
int main(int argc, char *argv[])
{
int int_array1[] = {1, 4, 20, 3, 10, 5};
int int_array2[] = {1, 4, 0, 0, 3, 10, 5};
vector<int> vec_array1;
vector<int> vec_array2;
for (int i = 0; i != sizeof(int_array1) / sizeof(int); ++i) {
vec_array1.push_back(int_array1[i]);
}
for (int i = 0; i != sizeof(int_array2) / sizeof(int); ++i) {
vec_array2.push_back(int_array2[i]);
}
Solution solution;
vector<int> result1 = solution.subarraySum2(vec_array1, 33);
vector<int> result2 = solution.subarraySum2(vec_array2, 7);
cout << "result1 = [" << result1[0] << " ," << result1[1] << "]" << endl;
cout << "result2 = [" << result2[0] << " ," << result2[1] << "]" << endl;
return 0;
}
~~~
### 源碼分析
使用`for`循環, 在`curr_sum > k`時使用`while`遞減`curr_sum`, 同時遞增左邊索引`left_index`, 最后累加`curr_sum`。如果順序不對就會出現 bug, 原因在于判斷子串和是否滿足條件時在遞增之后(謝謝 @glbrtchen 匯報 bug)。
### 復雜度分析
看似有兩重循環,由于僅遍歷一次數組,且索引最多挪動和數組等長的次數。故最終時間復雜度近似為 O(2n)O(2n)O(2n), 空間復雜度為 O(1)O(1)O(1).
### Reference
- [Find subarray with given sum - GeeksforGeeks](http://www.geeksforgeeks.org/find-subarray-with-given-sum/)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume