# Binary Tree Inorder Traversal
### Source
- leetcode: [Binary Tree Inorder Traversal | LeetCode OJ](https://leetcode.com/problems/binary-tree-inorder-traversal/)
- lintcode: [(67) Binary Tree Inorder Traversal](http://www.lintcode.com/en/problem/binary-tree-inorder-traversal/)
~~~
Given a binary tree, return the inorder traversal of its nodes' values.
Example
Given binary tree {1,#,2,3},
1
\
2
/
3
return [1,3,2].
Challenge
Can you do it without recursion?
~~~
### 題解1 - 遞歸版
中序遍歷的訪問順序為『先左再根后右』,遞歸版最好理解,遞歸調用時注意返回值和遞歸左右子樹的順序即可。
### Python
~~~
"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
this.val = val
this.left, this.right = None, None
"""
class Solution:
"""
@param root: The root of binary tree.
@return: Inorder in ArrayList which contains node values.
"""
def inorderTraversal(self, root):
if root is None:
return []
else:
return [root.val] + self.inorderTraversal(root.left) \
+ self.inorderTraversal(root.right)
~~~
### Python - with helper
~~~
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @return {integer[]}
def inorderTraversal(self, root):
result = []
self.helper(root, result)
return result
def helper(self, root, ret):
if root is not None:
self.helper(root.left, ret)
ret.append(root.val)
self.helper(root.right, ret)
~~~
### C++
~~~
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
helper(root, result);
return result;
}
private:
void helper(TreeNode *root, vector<int> &ret) {
if (root != NULL) {
helper(root->left, ret);
ret.push_back(root->val);
helper(root->right, ret);
}
}
};
~~~
### Java
~~~
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
helper(root, result);
return result;
}
private void helper(TreeNode root, List<Integer> ret) {
if (root != null) {
helper(root.left, ret);
ret.add(root.val);
helper(root.right, ret);
}
}
}
~~~
### 源碼分析
Python 這種動態語言在寫遞歸時返回結果好處理點,無需聲明類型。通用的方法為在遞歸函數入口參數中傳入返回結果,也可使用分治的方法替代輔助函數。
### 復雜度分析
樹中每個節點都需要被訪問常數次,時間復雜度近似為 O(n)O(n)O(n). 未使用額外輔助空間。
### 題解2 - 迭代版
使用輔助棧改寫遞歸程序,中序遍歷沒有前序遍歷好寫,其中之一就在于入棧出棧的順序和限制規則。我們采用「左根右」的訪問順序可知主要由如下四步構成。
1. 首先需要一直對左子樹迭代并將非空節點入棧
1. 節點指針為空后不再入棧
1. 當前節點為空時進行出棧操作,并訪問棧頂節點
1. 將當前指針p用其右子節點替代
步驟2,3,4對應「左根右」的遍歷結構,只是此時的步驟2取的左值為空。
### Python
~~~
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @return {integer[]}
def inorderTraversal(self, root):
result = []
s = []
while root is not None or s:
if root is not None:
s.append(root)
root = root.left
else:
root = s.pop()
result.append(root.val)
root = root.right
return result
~~~
### C++
~~~
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
/**
* @param root: The root of binary tree.
* @return: Inorder in vector which contains node values.
*/
public:
vector<int> inorderTraversal(TreeNode *root) {
vector<int> result;
stack<TreeNode *> s;
while (!s.empty() || NULL != root) {
if (root != NULL) {
s.push(root);
root = root->left;
} else {
root = s.top();
s.pop();
result.push_back(root->val);
root = root->right;
}
}
return result;
}
};
~~~
### Java
~~~
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
Stack<TreeNode> s = new Stack<TreeNode>();
while (root != null || !s.empty()) {
if (root != null) {
s.push(root);
root = root.left;
} else {
root = s.pop();
result.add(root.val);
root = root.right;
}
}
return result;
}
}
~~~
### 源碼分析
使用棧的思想模擬遞歸,注意迭代的演進和邊界條件即可。
### 復雜度分析
最壞情況下棧保存所有節點,空間復雜度 O(n)O(n)O(n), 時間復雜度 O(n)O(n)O(n).
### Reference
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume