# Triangle - Find the minimum path sum from top to bottom
### Source
- lintcode: [(109) Triangle](http://www.lintcode.com/en/problem/triangle/)
~~~
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
Note
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Example
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
~~~
### 題解
題中要求最短路徑和,每次只能訪問下行的相鄰元素,將triangle視為二維坐標。此題方法較多,下面分小節詳述。
### Method 1 - Traverse without hashmap
首先考慮最容易想到的方法——遞歸遍歷,逐個累加所有自上而下的路徑長度,最后返回這些不同的路徑長度的最小值。由于每個點往下都有2條路徑,使用此方法的時間復雜度約為 O(2n)O(2^n)O(2n), 顯然是不可接受的解,不過我們還是先看看其實現思路。
### C++ Traverse without hashmap
~~~
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) {
return -1;
}
int result = INT_MAX;
dfs(0, 0, 0, triangle, result);
return result;
}
private:
void dfs(int x, int y, int sum, vector<vector<int> > &triangle, int &result) {
const int n = triangle.size();
if (x == n) {
if (sum < result) {
result = sum;
}
return;
}
dfs(x + 1, y, (sum + triangle[x][y]), triangle, result);
dfs(x + 1, y + 1, (sum + triangle[x][y]), triangle, result);
}
};
~~~
### 源碼分析
`dfs()`的循環終止條件為`x == n`,而不是`x == n - 1`,主要是方便在遞歸時sum均可使用`sum + triangle[x][y]`,而不必根據不同的y和y+1改變,代碼實現相對優雅一些。理解方式則變為從第x行走到第x+1行時的最短路徑和,也就是說在此之前并不將第x行的元素值計算在內。
這種遍歷的方法時間復雜度如此之高的主要原因是因為在n較大時遞歸計算了之前已經得到的結果,而這些結果計算一次后即不再變化,可再次利用。因此我們可以使用hashmap記憶已經計算得到的結果從而對其進行優化。
### Method 2 - Divide and Conquer without hashmap
既然可以使用遞歸遍歷,當然也可以使用「分治」的方法來解。「分治」與之前的遍歷區別在于「分治」需要返回每次「分治」后的計算結果,下面看代碼實現。
### C++ Divide and Conquer without hashmap
~~~
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) {
return -1;
}
int result = dfs(0, 0, triangle);
return result;
}
private:
int dfs(int x, int y, vector<vector<int> > &triangle) {
const int n = triangle.size();
if (x == n) {
return 0;
}
return min(dfs(x + 1, y, triangle), dfs(x + 1, y + 1, triangle)) + triangle[x][y];
}
};
~~~
使用「分治」的方法代碼相對簡潔一點,接下來我們使用hashmap保存triangle中不同坐標的點計算得到的路徑和。
### Method 3 - Divide and Conquer with hashmap
新建一份大小和triangle一樣大小的hashmap,并對每個元素賦以`INT_MIN`以做標記區分。
### C++ Divide and Conquer with hashmap
~~~
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) {
return -1;
}
vector<vector<int> > hashmap(triangle);
for (int i = 0; i != hashmap.size(); ++i) {
for (int j = 0; j != hashmap[i].size(); ++j) {
hashmap[i][j] = INT_MIN;
}
}
int result = dfs(0, 0, triangle, hashmap);
return result;
}
private:
int dfs(int x, int y, vector<vector<int> > &triangle, vector<vector<int> > &hashmap) {
const int n = triangle.size();
if (x == n) {
return 0;
}
// INT_MIN means no value yet
if (hashmap[x][y] != INT_MIN) {
return hashmap[x][y];
}
int x1y = dfs(x + 1, y, triangle, hashmap);
int x1y1 = dfs(x + 1, y + 1, triangle, hashmap);
hashmap[x][y] = min(x1y, x1y1) + triangle[x][y];
return hashmap[x][y];
}
};
~~~
由于已經計算出的最短路徑值不再重復計算,計算復雜度由之前的 O(2n)O(2^n)O(2n),變為 O(n2)O(n^2)O(n2), 每個坐標的元素僅計算一次,故共計算的次數為 1+2+...+n≈O(n2)1+2+...+n \approx O(n^2)1+2+...+n≈O(n2).
### Method 4 - Dynamic Programming
從主章節中對動態規劃的簡介我們可以知道使用動態規劃的難點和核心在于**狀態的定義及轉化方程的建立**。那么問題來了,到底如何去找適合這個問題的狀態及轉化方程呢?
我們仔細分析題中可能的狀態和轉化關系,發現從`triangle`中坐標為 triangle[x][y]triangle[x][y]triangle[x][y] 的元素出發,其路徑只可能為 triangle[x][y]?>triangle[x+1][y]triangle[x][y]->triangle[x+1][y]triangle[x][y]?>triangle[x+1][y] 或者 triangle[x][y]?>triangle[x+1][y+1]triangle[x][y]->triangle[x+1][y+1]triangle[x][y]?>triangle[x+1][y+1]. 以點 (x,y)(x,y)(x,y) 作為參考,那么可能的狀態 f(x,y)f(x,y)f(x,y) 就可以是:
1. 從 (x,y)(x,y)(x,y) 出發走到最后一行的最短路徑和
1. 從 (0,0)(0,0)(0,0) 走到 (x,y)(x,y)(x,y)的最短路徑和
如果選擇1作為狀態,則相應的狀態轉移方程為:f1(x,y)=min{f1(x+1,y),f1(x+1,y+1)}+triangle[x][y]f_1(x,y) = min\{f_1(x+1, y), f_1(x+1, y+1)\} + triangle[x][y]f1(x,y)=min{f1(x+1,y),f1(x+1,y+1)}+triangle[x][y]
如果選擇2作為狀態,則相應的狀態轉移方程為:f2(x,y)=min{f2(x?1,y),f2(x?1,y?1)}+triangle[x][y]f_2(x,y) = min\{f_2(x-1, y), f_2(x-1, y-1)\} + triangle[x][y]f2(x,y)=min{f2(x?1,y),f2(x?1,y?1)}+triangle[x][y]
兩個狀態所對應的初始狀態分別為 f1(n?1,y),0≤y≤n?1f_1(n-1, y), 0 \leq y \leq n-1f1(n?1,y),0≤y≤n?1 和 f2(0,0)f_2(0,0)f2(0,0). 在代碼中應注意考慮邊界條件。下面分別就這種不同的狀態進行動態規劃。
### C++ From Bottom to Top
~~~
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) {
return -1;
}
vector<vector<int> > hashmap(triangle);
// get the total row number of triangle
const int N = triangle.size();
for (int i = 0; i != N; ++i) {
hashmap[N-1][i] = triangle[N-1][i];
}
for (int i = N - 2; i >= 0; --i) {
for (int j = 0; j < i + 1; ++j) {
hashmap[i][j] = min(hashmap[i + 1][j], hashmap[i + 1][j + 1]) + triangle[i][j];
}
}
return hashmap[0][0];
}
};
~~~
### 源碼分析
1. 異常處理
1. 使用hashmap保存結果
1. 初始化`hashmap[N-1][i]`, 由于是自底向上,故初始化時保存最后一行元素
1. 使用自底向上的方式處理循環
1. 最后返回結果hashmap[0][0]
從空間利用角度考慮也可直接使用triangle替代hashmap,但是此舉會改變triangle的值,不推薦。
### C++ From Top to Bottom
~~~
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
if (triangle.empty()) {
return -1;
}
vector<vector<int> > hashmap(triangle);
// get the total row number of triangle
const int N = triangle.size();
//hashmap[0][0] = triangle[0][0];
for (int i = 1; i != N; ++i) {
for (int j = 0; j <= i; ++j) {
if (j == 0) {
hashmap[i][j] = hashmap[i - 1][j];
}
if (j == i) {
hashmap[i][j] = hashmap[i - 1][j - 1];
}
if ((j > 0) && (j < i)) {
hashmap[i][j] = min(hashmap[i - 1][j], hashmap[i - 1][j - 1]);
}
hashmap[i][j] += triangle[i][j];
}
}
int result = INT_MAX;
for (int i = 0; i != N; ++i) {
result = min(result, hashmap[N - 1][i]);
}
return result;
}
};
~~~
#### 源碼解析
自頂向下的實現略微有點復雜,在尋路時需要考慮最左邊和最右邊的邊界,還需要在最后返回結果時比較最小值。
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume