<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # Permutation Index ### Source - lintcode: [(197) Permutation Index](http://www.lintcode.com/en/problem/permutation-index/) ~~~ Given a permutation which contains no repeated number, find its index in all the permutations of these numbers, which are ordered in lexicographical order. The index begins at 1. Example Given [1,2,4], return 1. ~~~ ### 題解 做過 next permutation 系列題的話自然能想到不斷迭代直至最后一個,最后返回計數器的值即可。這種方法理論上自然是可行的,但是最壞情況下時間復雜度為 O(n!)O(n!)O(n!), 顯然是不能接受的。由于這道題只是列出某給定 permutation 的相對順序(index), 故我們可從 permutation 的特點出發進行分析。 以序列`1, 2, 4`為例,其不同的排列共有 `3!=6` 種,以排列`[2, 4, 1]`為例,若將1置于排列的第一位,后面的排列則有 `2!=2` 種。將2置于排列的第一位,由于`[2, 4, 1]`的第二位4在1, 2, 4中為第3大數,故第二位可置1或者2,那么相應的排列共有 `2 * 1! = 2`種,最后一位1為最小的數,故比其小的排列為0。綜上,可參考我們常用的十進制和二進制的轉換,對于`[2, 4, 1]`, 可總結出其排列的`index`為`2! * (2 - 1) + 1! * (3 - 1) + 0! * (1 - 1) + 1`. 以上分析看似正確無誤,實則有個關鍵的漏洞,在排定第一個數2后,第二位數只可為1或者4,而無法為2, 故在計算最終的 index 時需要動態計算某個數的相對大小。按照從低位到高位進行計算,我們可通過兩重循環得出到某個索引處值的相對大小。 ### Python ~~~ class Solution: # @param {int[]} A an integer array # @return {long} a long integer def permutationIndex(self, A): if A is None or len(A) == 0: return 0 index = 1 factor = 1 for i in xrange(len(A) - 1, -1, -1): rank = 0 for j in xrange(i + 1, len(A)): if A[i] > A[j]: rank += 1 index += rank * factor factor *= (len(A) - i) return index ~~~ ### C++ ~~~ class Solution { public: /** * @param A an integer array * @return a long integer */ long long permutationIndex(vector<int>& A) { if (A.empty()) return 0; long long index = 1; long long factor = 1; for (int i = A.size() - 1; i >= 0; --i) { int rank = 0; for (int j = i + 1; j < A.size(); ++j) { if (A[i] > A[j]) ++rank; } index += rank * factor; factor *= (A.size() - i); } return index; } }; ~~~ ### Java ~~~ public class Solution { /** * @param A an integer array * @return a long integer */ public long permutationIndex(int[] A) { if (A == null || A.length == 0) return 0; long index = 1; long factor = 1; for (int i = A.length - 1; i >= 0; i--) { int rank = 0; for (int j = i + 1; j < A.length; j++) { if (A[i] > A[j]) rank++; } index += rank * factor; factor *= (A.length - i); } return index; } } ~~~ ### 源碼分析 注意 index 和 factor 的初始化值,rank 的值每次計算時都需要重新置零,index 先自增,factor 后自乘求階乘。 ### 復雜度分析 雙重 for 循環,時間復雜度為 O(n2)O(n^2)O(n2). 使用了部分額外空間,空間復雜度 O(1)O(1)O(1). ### Reference - [Permutation Index](http://www.geekviewpoint.com/java/numbers/permutation_index)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看