<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # Unique Paths II - tags: [[DP_Matrix](# "根據動態規劃解題的四要素,矩陣類動態規劃問題通常可用 f[x][y] 表示從起點走到坐標(x,y)的值")] ### Source - lintcode: [(115) Unique Paths II](http://www.lintcode.com/en/problem/unique-paths-ii/) ~~~ Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. Note m and n will be at most 100. Example For example, There is one obstacle in the middle of a 3x3 grid as illustrated below. [ [0,0,0], [0,1,0], [0,0,0] ] The total number of unique paths is 2. ~~~ ### 題解 在上題的基礎上加了obstacal這么一個限制條件,那么也就意味著凡是遇到障礙點,其路徑數馬上變為0,需要注意的是初始化環節和上題有較大不同。首先來看看錯誤的初始化實現。 ### C++ initialization error ~~~ class Solution { public: /** * @param obstacleGrid: A list of lists of integers * @return: An integer */ int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { if(obstacleGrid.empty() || obstacleGrid[0].empty()) { return 0; } const int M = obstacleGrid.size(); const int N = obstacleGrid[0].size(); vector<vector<int> > ret(M, vector<int>(N, 0)); for (int i = 0; i != M; ++i) { if (0 == obstacleGrid[i][0]) { ret[i][0] = 1; } } for (int i = 0; i != N; ++i) { if (0 == obstacleGrid[0][i]) { ret[0][i] = 1; } } for (int i = 1; i != M; ++i) { for (int j = 1; j != N; ++j) { if (obstacleGrid[i][j]) { ret[i][j] = 0; } else { ret[i][j] = ret[i -1][j] + ret[i][j - 1]; } } } return ret[M - 1][N - 1]; } }; ~~~ ### 源碼分析 錯誤之處在于初始化第0行和第0列時,未考慮到若第0行/列有一個坐標出現障礙物,則當前行/列后的元素路徑數均為0! ### C++ ~~~ class Solution { public: /** * @param obstacleGrid: A list of lists of integers * @return: An integer */ int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { if(obstacleGrid.empty() || obstacleGrid[0].empty()) { return 0; } const int M = obstacleGrid.size(); const int N = obstacleGrid[0].size(); vector<vector<int> > ret(M, vector<int>(N, 0)); for (int i = 0; i != M; ++i) { if (obstacleGrid[i][0]) { break; } else { ret[i][0] = 1; } } for (int i = 0; i != N; ++i) { if (obstacleGrid[0][i]) { break; } else { ret[0][i] = 1; } } for (int i = 1; i != M; ++i) { for (int j = 1; j != N; ++j) { if (obstacleGrid[i][j]) { ret[i][j] = 0; } else { ret[i][j] = ret[i -1][j] + ret[i][j - 1]; } } } return ret[M - 1][N - 1]; } }; ~~~ ### 源碼分析 1. 異常處理 1. 初始化二維矩陣(全0陣),尤其注意遇到障礙物時應`break`跳出當前循環 1. 遞推路徑數 1. 返回`ret[M - 1][N - 1]`
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看