# Update Bits
### Source
- CTCI: [(179) Update Bits](http://www.lintcode.com/en/problem/update-bits/)
~~~
Given two 32-bit numbers, N and M, and two bit positions, i and j.
Write a method to set all bits between i and j in N equal to M
(e g , M becomes a substring of N located at i and starting at j)
Example
Given N=(10000000000)2, M=(10101)2, i=2, j=6
return N=(10001010100)2
Note
In the function, the numbers N and M will given in decimal,
you should also return a decimal number.
Challenge
Minimum number of operations?
Clarification
You can assume that the bits j through i have enough space to fit all of M.
That is, if M=10011,
you can assume that there are at least 5 bits between j and i.
You would not, for example, have j=3 and i=2,
because M could not fully fit between bit 3 and bit 2.
~~~
### 題解
Cracking The Coding Interview 上的題,題意簡單來講就是使用 M 代替 N 中的第`i`位到第`j`位。很顯然,我們需要借用掩碼操作。大致步驟如下:
1. 得到第`i`位到第`j`位的比特位為0,而其他位均為1的掩碼`mask`。
1. 使用`mask`與 N 進行按位與,清零 N 的第`i`位到第`j`位。
1. 對 M 右移`i`位,將 M 放到 N 中指定的位置。
1. 返回 N | M 按位或的結果。
獲得掩碼`mask`的過程可參考 CTCI 書中的方法,先獲得掩碼(1111...000...111)的左邊部分,然后獲得掩碼的右半部分,最后左右按位或即為最終結果。
### C++
~~~
class Solution {
public:
/**
*@param n, m: Two integer
*@param i, j: Two bit positions
*return: An integer
*/
int updateBits(int n, int m, int i, int j) {
int ones = ~0;
int left = ones << (j + 1);
int right = ((1 << i) - 1);
int mask = left | right;
return (n & mask) | (m << i);
}
};
~~~
### 源碼分析
在給定測試數據`[-521,0,31,31]`時出現了 WA, 也就意味著目前這段程序是存在 bug 的,此時`m = 0, i = 31, j = 31`,仔細瞅瞅到底是哪幾行代碼有問題?本地調試后發現問題出在`left`那一行,`left`移位后仍然為`ones`, 這是為什么呢?在`j`為31時`j + 1`為32,也就是說此時對`left`位移的操作已經超出了此時`int`的最大位寬!
### C++
~~~
class Solution {
public:
/**
*@param n, m: Two integer
*@param i, j: Two bit positions
*return: An integer
*/
int updateBits(int n, int m, int i, int j) {
int ones = ~0;
int mask = 0;
if (j < 31) {
int left = ones << (j + 1);
int right = ((1 << i) - 1);
mask = left | right;
} else {
mask = (1 << i) - 1;
}
return (n & mask) | (m << i);
}
};
~~~
### 源碼分析
使用`~0`獲得全1比特位,在`j == 31`時做特殊處理,即不必求`left`。求掩碼的右側1時使用了`(1 << i) - 1`, 題中有保證第`i`位到第`j`位足以容納 M, 故不必做溢出處理。
### 復雜度分析
時間復雜度和空間復雜度均為 O(1)O(1)O(1).
### C++
~~~
class Solution {
public:
/**
*@param n, m: Two integer
*@param i, j: Two bit positions
*return: An integer
*/
int updateBits(int n, int m, int i, int j) {
// get the bit width of input integer
int bitwidth = 8 * sizeof(n);
int ones = ~0;
// use unsigned for logical shift
unsigned int mask = ones << (bitwidth - (j - i + 1));
mask = mask >> (bitwidth - 1 - j);
return (n & (~mask)) | (m << i);
}
};
~~~
### 源碼分析
之前的實現需要使用`if`判斷,但實際上還有更好的做法,即先獲得`mask`的反碼,最后取反即可。但這種方法需要提防有符號數,因為 C/C++ 中對有符號數的移位操作為算術移位,也就是說對負數右移時會在前面補零。解決辦法可以使用無符號數定義`mask`.
按題意 int 的位數為32,但考慮到通用性,可以使用`sizeof`獲得其真實位寬。
### 復雜度分析
時間復雜度和空間復雜度均為 O(1)O(1)O(1).
### Reference
- [c++ - logical shift right on signed data - Stack Overflow](http://stackoverflow.com/questions/13221369/logical-shift-right-on-signed-data)
- [Update Bits | 九章算法](http://www.jiuzhang.com/solutions/update-bits/)
- *CTCI 5th Chapter 9.5 中文版* p163
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume