##一、函數連續的概念
#### 函數在一點處連續
必須滿足三個條件:
1. f(x)在Xo處有定義
2. 極限存在
3. 極限值等于f(Xo)
#### 左連續與右連續
#### 函數在一點處連續的充分必要條件
#### 連續函數
#### 函數的間斷點及其分類
不滿足函數連續性的點稱為間斷點。
包括三種情形
1. f(x)在x0 無定義
2. f(x)在x0->x0無極限
3. f(x)在x0->x0有極限但不等于f(x0)
* 第一類間斷點: 左右極限都存在
跳躍間斷點:左右極限存在不相等
可去間斷點: 極限存在,但f(x)在Xo無定義,或者極限值不等于f(Xo)
* 第二類間斷點:不是第一類的都是第二類
* 無窮間斷點:某一側極限無窮大
* 振蕩間斷點
#### 連續函數的四則運算
* 有限個某點連續的函數的和在該點連續
* 有限個某點連續的乘積在該點連續
* 兩個在某點連續的函數的商在該點連續(分母在該點不為0)
#### 復合函數的連續性
#### 反函數的連續性
若函數y=f(x)在某區間單調增(或減)且連續,則反函數也單調增(或減)且連續
#### 初等函數的連續性
,u=φ(x)當x-> x0極限存在且等于a,函數y=f(u)在u=a連續,則復合函數在x-> x0極限存在。
##二、閉區間上連續函數的性質
#### 有界性定理
#### 最值定理
#### 零點定理
#### 介值定理
- 空白目錄
- 第一篇 高等數學
- 第一章
- 第一節 函數
- 第二節 極限
- 第三節 連續
- 第二章 一元函數微分學
- 第一節 導數與微分
- 第二節 微分中值定理及導數的應用
- 第三章 一元函數積分學
- 第一節 不定積分
- 第二節 定積分
- 第四章 向量代數與空間解析幾何
- 第一節 向量代數
- 第二節 曲面與平面
- 第三節 曲線與直線
- 第五章 多元函數微分學
- 第一節 多元函數微分學
- 第二節 多元函數微分學的應用
- 第六章 多元函數積分學
- 第一章 重積分
- 第二章 曲線積分與曲面積分
- 第七章 無窮級數
- 第一節 數項級數
- 第二節 冪級數
- 第三節 傅里葉級數
- 第八章 常微分方程
- 第一節 微分方程的基本概念
- 第二節 一階微分方程
- 第三節 高階微分方程
- 第二篇 線性代數
- 第一章 行列式
- 第一節 n階行列式的概念
- 第二節 行列式的性質
- 第三節 克萊姆法則
- 第二章 矩陣
- 第一節 矩陣的概念
- 第二節 矩陣的運算
- 第三節 矩陣的分塊
- 第四節 矩陣的初等變換
- 第五節 矩陣的秩
- 第三章 向量
- 第一節 向量組及其線性相關性
- 第二節 向量組的秩
- 第三節 向量空間
- 第四節 n維歐幾里得空間
- 第四章 線性方程組
- 第一節 線性方程組的基本概念
- 第二節 線性方程組的消元法
- 第三節 線性方程組解的結構
- 第五章 矩陣的相似化簡
- 第一節 特征值與特征向量
- 第二節 矩陣的相似對角化
- 第三節 實對稱矩陣的對角化
- 第六章 二次型
- 第一節 二次型及其矩陣表示
- 第二節 二次型的標準形
- 第三節 正定二次型
- 第三篇 概率論與數理統計
- 第一章 概率論的基本概念
- 第一節 樣本空間
- 第二節 頻率與概率
- 第三節 等可能概型
- 第四節 條件概率
- 第五節 獨立性
- 第二章 隨機變量及其分布
- 第一節 隨機變量及其分布函數
- 第二節 離散型隨機變量
- 第三節 連續型隨機變量
- 第四節 隨機變量的函數的分布
- 第三章 多維隨機變量及其分布
- 第一節 多維隨機變量
- 第二節 二位離散型隨機變量
- 第三節 二維連續型隨機變量
- 第四節 相互獨立的隨機變量
- 第五節 兩個隨機變量的函數的分布
- 第四章 隨機變量的數字特征
- 第一節 數學期望與方差
- 第二節 協方差、相關系數、矩、協方差矩陣
- 第五章 大數定律與中心極限定理
- 第一節 大數定律
- 第二節 中心極限定理
- 第六章 樣本及抽樣分布
- 第一節 隨機樣本、直方圖和箱線圖
- 第二節 抽樣分布
- 第七章 參數統計
- 第一節 點估計
- 第二節 區間估計
- 第八章 假設檢驗
- 第一節 假設檢驗
- 第二節 正態總體均值的假設檢驗
- 第三節 正態總體方差的假設檢驗
- 第四節 分布擬合檢驗
- 參考
- 希臘字母淵源、發展及讀法
- KaTex
- 微積分公式
- 三角函數
- 導數公式
- 極限
- 概率論