<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                ## Geo Distance Aggregation 在geo_point字段上工作的多bucket聚合和概念上的工作非常類似于[range](https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-range-aggregation.html)(范圍)聚合.用戶可以定義原點的點和距離范圍的集合。聚合計算每個文檔值與原點的距離,并根據范圍確定其所屬的bucket(桶)(如果文檔和原點之間的距離落在bucket(桶)的距離范圍內,則文檔屬于bucket(桶) ) | `PUT /museums` `{` `"mappings": {` `"doc": {` `"properties": {` `"location": {` `"type": "geo_point"` `}` `}` `}` `}` `}` `POST /museums/doc/_bulk?refresh` `{"index":{"_id":1}}` `{"location": "52.374081,4.912350", "name": "NEMO Science Museum"}` `{"index":{"_id":2}}` `{"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}` `{"index":{"_id":3}}` `{"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}` `{"index":{"_id":4}}` `{"location": "51.222900,4.405200", "name": "Letterenhuis"}` `{"index":{"_id":5}}` `{"location": "48.861111,2.336389", "name": "Musée du Louvre"}` `{"index":{"_id":6}}` `{"location": "48.860000,2.327000", "name": "Musée d'Orsay"}` `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings_around_amsterdam" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"ranges" : [` `{ "to" : 100000 },` `{ "from" : 100000, "to" : 300000 },` `{ "from" : 300000 }` `]` `}` `}` `}` `}` | 響應結果: | `{` `...` `"aggregations": {` `"rings_around_amsterdam" : {` `"buckets": [` `{` `"key": "*-100000.0",` `"from": 0.0,` `"to": 100000.0,` `"doc_count": 3` `},` `{` `"key": "100000.0-300000.0",` `"from": 100000.0,` `"to": 300000.0,` `"doc_count": 1` `},` `{` `"key": "300000.0-*",` `"from": 300000.0,` `"doc_count": 2` `}` `]` `}` `}` `}` | 指定的字段必須是geo_point類型(只能在映射中顯式設置)。它還可以保存一個geo_point字段的數組,在這種情況下,在聚合期間將考慮所有這些字段。原點可以接受[geo_point](https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html)類型支持的所有格式: * 對象格式:{ "lat" : 52.3760, "lon" : 4.894 }-?這是最安全的格式,因為它是最明確的lat?(緯度)& lon(經度)值 * 字符串格式:"52.3760, 4.894" ?-?第一個數值是lat(緯度),第二個是lon(經度) * 數組格式:[4.894, 52.3760] ?-?它基于GeoJson標準,第一個數字是lon(經度),第二個數字是lat(緯度) 在默認情況下,距離單位是m(米),但它也可以接受:mi(英里),in(英寸),yd(碼),km(公里),cm(厘米),毫米(毫米)。 | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"unit" : "km", #1` `"ranges" : [` `{ "to" : 100 },` `{ "from" : 100, "to" : 300 },` `{ "from" : 300 }` `]` `}` `}` `}` `}` | #1 ??距離將以公里計算 有兩種距離計算模式:arc(默認) 和?plane, arc(電弧)計算模式是最準確的,plane模式是最快的,但是最不準確。當考慮搜索上下文是“narrow”,跨越較小的地理區域(約5km)可以用plane,plane將為非常大的區域(例如跨大陸搜索)的搜索返回更高的誤差區間。距離計算類型可以使用distance_type參數設置。 ? ? | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"unit" : "km",` `"distance_type" : "plane",` `"ranges" : [` `{ "to" : 100 },` `{ "from" : 100, "to" : 300 },` `{ "from" : 300 }` `]` `}` `}` `}` `}` | ? ### Keyed Response 將keyed標志設置為true會將一個惟一的字符串鍵與每個bucket(桶)關聯起來,并將范圍作為散列而不是數組返回: | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings_around_amsterdam" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"ranges" : [` `{ "to" : 100000 },` `{ "from" : 100000, "to" : 300000 },` `{ "from" : 300000 }` `],` `"keyed": true` `}` `}` `}` `}` | 返回結果: | `{` `...` `"aggregations": {` `"rings_around_amsterdam" : {` `"buckets": {` `"*-100000.0": {` `"from": 0.0,` `"to": 100000.0,` `"doc_count": 3` `},` `"100000.0-300000.0": {` `"from": 100000.0,` `"to": 300000.0,` `"doc_count": 1` `},` `"300000.0-*": {` `"from": 300000.0,` `"doc_count": 2` `}` `}` `}` `}` `}` | 也可以為每個范圍自定義key | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings_around_amsterdam" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"ranges" : [` `{ "to" : 100000, "key": "first_ring" },` `{ "from" : 100000, "to" : 300000, "key": "second_ring" },` `{ "from" : 300000, "key": "third_ring" }` `],` `"keyed": true` `}` `}` `}` `}` | 返回結果: | `{` `...` `"aggregations": {` `"rings_around_amsterdam" : {` `"buckets": {` `"first_ring": {` `"from": 0.0,` `"to": 100000.0,` `"doc_count": 3` `},` `"second_ring": {` `"from": 100000.0,` `"to": 300000.0,` `"doc_count": 1` `},` `"third_ring": {` `"from": 300000.0,` `"doc_count": 2` `}` `}` `}` `}` `}` |
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看