## Histogram Aggregation
A multi-bucket values source based aggregation,可以應用于從文檔中提取的數值。它會動態地在值上構建固定大小(a.k.a.interval)桶。例如,如果文檔有一個包含價格的字段(數值),我們可以配置這個聚合來動態地構建帶間隔5的bucket(比如價格可能代表$ 5),當聚合執行時,每個文檔的價格字段將被評估,并將四舍五入到最接近的bucket,例如,如果價格是32,而bucket(桶)的大小是5,那么四舍五入將產生30,因此,文檔將“掉落”到與關鍵30相關的bucket(桶)中,為了使這更正式,這里是使用的如下計算公式:
|
`bucket_key = Math.floor((value - offset) / interval) * interval + offset`
|
interval必須是正數,而offset(偏移量)必須是小數`[0, interval[`.
下面的代碼片段“bucket”基于價格的間隔為50
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50`
`}`
`}`
`}`
`}`
|
可能返回以下結果:
|
`{`
`...`
`"aggregations": {`
`"prices" : {`
`"buckets": [`
`{`
`"key": 0.0,`
`"doc_count": 1`
`},`
`{`
`"key": 50.0,`
`"doc_count": 1`
`},`
`{`
`"key": 100.0,`
`"doc_count": 0`
`},`
`{`
`"key": 150.0,`
`"doc_count": 2`
`},`
`{`
`"key": 200.0,`
`"doc_count": 3`
`}`
`]`
`}`
`}`
`}`
|
### Minimum document count
上面的結果顯示,沒有任何文檔的價格在[100 - 150)范圍內。默認情況下,返回結果將用空桶填充直方圖中的空白。由于min_doc_count設置,可能會更改這個和請求桶的最小值,這是由min_doc_count設置:
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50,`
`"min_doc_count" : 1`
`}`
`}`
`}`
`}`
|
返回結果:
|
`{`
`...`
`"aggregations": {`
`"prices" : {`
`"buckets": [`
`{`
`"key": 0.0,`
`"doc_count": 1`
`},`
`{`
`"key": 50.0,`
`"doc_count": 1`
`},`
`{`
`"key": 150.0,`
`"doc_count": 2`
`},`
`{`
`"key": 200.0,`
`"doc_count": 3`
`}`
`]`
`}`
`}`
`}`
|
默認情況下,histogram返回數據本身范圍內的所有bucket,也就是說,具有最小值(使用直方圖)的文檔將確定最小的bucket(帶有最小鍵的bucket),具有最高值的文檔將確定最大的bucket(具有最高鍵的bucket)。通常,當請求空buckets時,這會造成混亂,特別是當數據被過濾時。
為了說明原因,讓我們來看一下列子:
假設你正在過濾您的請求,以獲取值在0到500之間的所有文檔,此外,您還希望使用直方圖來將數據切片,其中間隔為50,您還要指定“min_doc_count”:0,因為您希望獲得所有的桶,即使是空的。如果發生這種情況,所有產品(文件)的價格都高于100,你將獲得的第一個bucket將是一個100的key,這是令人困惑的,很多次,你還想把這些桶放在0到100之間。
通過使用extended_bounds設置,現在,您可以“強制”直方圖聚合來開始在特定的min值上構建bucket,并且還可以繼續構建到最大值的bucket(即使沒有文檔了),當min_doc_count為0時,使用extended_bounds才有意義(如果min_doc_count大于0,則永遠不會返回空buckets)
注意,(顧名思義)extended_bounds不是過濾buckets。意味著,如果extended_bounds.min高于從文檔中提取的值。這些文件仍將決定第一個bucket將是什么(對于extended_bounds.max和最后一個bucket也是一樣),對于filtering buckets,應使用適當的from/to設置將范圍過濾器聚合下的直方圖聚合嵌套。
例子:
|
`POST /sales/_search?size=0`
`{`
`"query" : {`
`"constant_score" : { "filter": { "range" : { "price" : { "to" : "500" } } } }`
`},`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50,`
`"extended_bounds" : {`
`"min" : 0,`
`"max" : 500`
`}`
`}`
`}`
`}`
`}`
|
### Order
默認情況下,返回的bucket按它們的key升序排序,盡管順序行為可以通過order設置來控制。
按鍵降序排列桶:
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50,`
`"order" : { "_key" : "desc" }`
`}`
`}`
`}`
`}`
|
按其doc_count - 升序排列:
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50,`
`"order" : { "_count" : "asc" }`
`}`
`}`
`}`
`}`
|
If the histogram aggregation has a direct metrics sub-aggregation,?則后者可以確定桶的順序:
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50,`
`"order" : { "price_stats.min" : "asc" } #1`
`},`
`"aggs" : {`
`"price_stats" : { "stats" : {"field" : "price"} }`
`}`
`}`
`}`
`}`
|
#1 ?{“price_stats.min”:asc“}將根據其price_stats子聚合的最小值對桶進行排序。也可以根據層次結構中的“更深層次的”聚合來對buckets進行排序,只要聚合路徑是single-bucket類型,就可以支持這一點,在路徑中的最后一個聚合可能是單桶的,也可以是度量的。如果它是一個single-bucket類型,那么這個順序將由bucket中的文檔數來定義(例如doc_count),如果這是一個度量標準,則與上面的規則相同(如果路徑必須指出度量名稱以在multi-value度量聚合的情況下排序,并且在single-value度量聚合的情況下,該排序將應用于該值)
路徑必須以下列形式定義:
|
`AGG_SEPARATOR?????? =? '>' ;`
`METRIC_SEPARATOR??? =? '.' ;`
`AGG_NAME??????????? =? <the name of the aggregation> ;`
`METRIC????????????? =? <the name of the metric (in case of multi-value metrics aggregation)> ;`
`PATH??????????????? =? <AGG_NAME> [ <AGG_SEPARATOR>, <AGG_NAME> ]* [ <METRIC_SEPARATOR>, <METRIC> ] ;`
|
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50,`
`"order" : { "promoted_products>rating_stats.avg" : "desc" }`
`},`
`"aggs" : {`
`"promoted_products" : {`
`"filter" : { "term" : { "promoted" : true }},`
`"aggs" : {`
`"rating_stats" : { "stats" : { "field" : "rating" }}`
`}`
`}`
`}`
`}`
`}`
`}`
|
上述將根據促銷產品的平均評級對桶進行排序
### Offset
默認情況下,bucket鍵以0開始,然后以interval間隔均勻分布,例如,如果間隔為10,則第一個桶(假設里面有數據)將為[0 - 9],[10-19],[20-29],可以使用offset選項來改變bucket的邊界。
這可以用一個例子來說明,如果有10個值從5到14的文檔,使用interval10將產生兩個bucket,每個bucket包含5個文檔,如果使用附加的offset為5,則只有一個包含所有10個文檔的單個bucket[5-14]。
### Response Format
默認情況下,buckets作為有序數組返回,還可以將響應請求為哈希,而不是用bucket鍵。
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"prices" : {`
`"histogram" : {`
`"field" : "price",`
`"interval" : 50,`
`"keyed" : true`
`}`
`}`
`}`
`}`
|
響應結果:
|
`{`
`...`
`"aggregations": {`
`"prices": {`
`"buckets": {`
`"0.0": {`
`"key": 0.0,`
`"doc_count": 1`
`},`
`"50.0": {`
`"key": 50.0,`
`"doc_count": 1`
`},`
`"100.0": {`
`"key": 100.0,`
`"doc_count": 0`
`},`
`"150.0": {`
`"key": 150.0,`
`"doc_count": 2`
`},`
`"200.0": {`
`"key": 200.0,`
`"doc_count": 3`
`}`
`}`
`}`
`}`
`}`
|
### Missing value
missing的參數定義了如何處理缺少值的文檔,默認情況下,它們將被忽略,但也有可能將它們視為具有值
|
`POST /sales/_search?size=0`
`{`
`"aggs" : {`
`"quantity" : {`
`"histogram" : {`
`"field" : "quantity",`
`"interval": 10,`
`"missing": 0 #1`
`}`
`}`
`}`
`}`
|
#1 ? quantity字段沒有值的文檔將落入與文檔相同的bucket中
#1 ? 值為0
- 入門
- 基本概念
- 安裝
- 探索你的集群
- 集群健康
- 列出所有索引庫
- 創建一個索引庫
- 索引文檔創建與查詢
- 刪除一個索引庫
- 修改你的數據
- 更新文檔
- 刪除文檔
- 批量處理
- 探索你的數據
- 搜索API
- 查詢語言介紹
- 執行搜索
- 執行過濾
- 執行聚合
- 總結
- Elasticsearch設置
- 安裝Elasticsearch
- .zip或.tar.gz文件的安裝方式
- Install Elasticsearch with .zip on Windows
- Debian軟件包安裝方式
- RPM安裝方式
- Install Elasticsearch with Windows MSI Installer
- Docker安裝方式
- 配置Elasticsearch
- 安全配置
- 日志配置
- 重要的Elasticsearch配置
- 重要的系統配置
- 系統設置
- 在jvm.options中設置JVM堆大小
- 禁用swapping
- 文件描述符
- 虛擬內存
- 線程數
- DNS cache settings
- 啟動前檢查
- 堆大小檢查
- 文件描述符檢查
- 內存鎖定檢查
- 最大線程數檢查
- 最大虛擬內存檢查
- Max file size check
- 最大map數檢查
- JVM Client模式檢查
- 串行收集使用檢查
- 系統調用過濾檢查
- OnError與OnOutOfMemoryError檢查
- Early-access check
- G1GC檢查
- Elasticsearch停機
- Elasticsearch升級
- 滾動升級
- 全集群重啟升級
- 索引重建升級
- Set up X-Pack
- Installing X-Pack
- X-Pack Settings
- Watcher Settings
- Configuring Security
- Breaking changes in 6.0
- X-Pack Breaking Changes
- 重大變化
- 6.0的重大變化
- 聚合變化
- Cat API變化
- 客戶端變化
- 集群變化
- 文檔API變化
- 索引變化
- 預處理變化
- 映射變化
- Packaging變化
- Percolator變化
- 插件變化
- 索引重建變化
- 信息統計變化
- DSL查詢變化
- 設置變化
- 腳本變化
- API約定
- 多索引語法
- 索引庫名稱的日期運算
- 常用選項
- URL-based訪問控制
- 文檔APIs
- 讀寫文檔
- 索引接口
- Get接口
- Delete API
- Delete By Query API
- Update API
- Update By Query API
- Multi Get API
- Bulk API
- Reindex API
- Term Vectors
- Multi termvectors API
- ?refresh
- 搜索APIs
- Search
- URI Search
- Request Body Search
- Query
- From / Size
- Sort
- Source filtering
- Fields
- Script Fields
- Doc value Fields
- Post filter
- Highlighting
- Rescoring
- Search Type
- Scroll
- Preference
- Explain
- Version
- Index Boost
- min_score
- Named Queries
- Inner hits
- Field Collapsing
- Search After
- Search Template
- Multi Search Template
- Search Shards API
- Suggesters
- Term suggester
- Phrase Suggester
- Completion Suggester
- Context Suggester
- Returning the type of the suggester
- Multi Search API
- Count API
- Validate API
- Explain API
- Profile API
- Profiling Queries
- Profiling Aggregations
- Profiling Considerations
- Field Capabilities API
- Aggregations
- Metrics Aggregations
- 平均值聚合
- 值計數聚合(Value Count Aggregation)
- Cardinality Aggregation
- Extended Stats Aggregation
- 地理邊界聚合
- 地理重心聚合
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- 鄰接矩陣聚合
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Significant Terms Aggregation
- Filter Aggregation(過濾器聚合)
- Filters Aggregation
- Geo Distance Aggregation(地理距離聚合) 轉至元數據結尾
- GeoHash grid Aggregation(GeoHash網格聚合)
- Global Aggregation(全局聚合) 轉至元數據結尾
- Histogram Aggregation
- IP Range Aggregation(IP范圍聚合)
- Missing Aggregation
- Nested Aggregation(嵌套聚合)
- Range Aggregation(范圍聚合)
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation(導數聚合)
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation(擴展信息桶聚合)
- Percentiles Bucket Aggregation(百分數桶聚合)
- Moving Average Aggregation
- Cumulative Sum Aggregation(累積匯總聚合)
- Bucket Script Aggregation(桶腳本聚合)
- Bucket Selector Aggregation(桶選擇器聚合)
- Serial Differencing Aggregation(串行差異聚合)
- Matrix Aggregations
- Matrix Stats
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indices APIs
- Create Index /創建索引
- Delete Index /刪除索引
- Get Index /獲取索引
- Indices Exists /索引存在
- Open / Close Index API /啟動關閉索引
- Shrink Index /縮小索引
- Rollover Index/滾動索引
- Put Mapping /提交映射
- Get Mapping /獲取映射
- Get Field Mapping /獲取字段映射
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Explain Analyze
- Index Templates
- 索引統計信息
- 索引段
- 索引恢復
- 索引分片存儲
- 清理緩存
- 刷新
- 同步刷新
- 重新加載
- 強制合并
- Cat APIs
- cat aliases
- cat allocation
- cat count
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat thread pool
- cat snapshots
- cat templates
- Cluster APIs
- 集群健康
- 集群狀態
- 集群統計
- 掛起的集群任務
- 集群重新路由
- Cluster Update Settings
- Nodes Stats
- Nodes Info
- Nodes Feature Usage
- Remote Cluster Info
- Task Management API
- Nodes hot_threads
- Cluster Allocation Explain API
- Query DSL
- 查詢context與過濾context
- Match All Query
- 全文搜索
- 匹配查詢
- 短語匹配查詢
- 短語前綴匹配查詢
- 多字段查詢
- 常用術語查詢
- 查詢語句查詢
- 簡單查詢語句
- Term level queries
- Term Query
- Terms Query
- Range Query
- Exists Query
- Prefix Query
- Wildcard Query
- Regexp Query
- Fuzzy Query
- Type Query
- Ids Query
- 復合查詢
- Constant Score 查詢
- Bool 查詢
- Dis Max 查詢
- Function Score 查詢
- Boosting 查詢
- Joining queries
- Has Child Query
- Has Parent Query
- Nested Query(嵌套查詢)
- Parent Id Query
- Geo queries
- GeoShape Query(地理形狀查詢)
- Geo Bounding Box Query(地理邊框查詢)
- Geo Distance Query(地理距離查詢)
- Geo Polygon Query(地理多邊形查詢)
- Specialized queries
- More Like This Query
- Script Query
- Percolate Query
- Span queries
- Span Term 查詢
- Span Multi Term 查詢
- Span First 查詢
- Span Near 查詢
- Span Or 查詢
- Span Not 查詢
- Span Containing 查詢
- Span Within 查詢
- Span Field Masking 查詢 轉至元數據結尾
- Minimum Should Match
- Multi Term Query Rewrite
- Mapping
- Removal of mapping types
- Field datatypes
- Array
- Binary
- Range
- Boolean
- Date
- Geo-point datatype
- Geo-Shape datatype
- IP datatype
- Keyword datatype
- Nested datatype
- Numeric datatypes
- Object datatype
- Text
- Token數
- 滲濾型
- join datatype
- Meta-Fields
- _all field
- _field_names field
- _id field
- _index field
- _meta field
- _routing field
- _source field
- _type field
- _uid field
- Mapping parameters
- analyzer(分析器)
- normalizer(歸一化)
- boost(提升)
- Coerce(強制類型轉換)
- copy_to(合并參數)
- doc_values(文檔值)
- dynamic(動態設置)
- enabled(開啟字段)
- eager_global_ordinals
- fielddata(字段數據)
- format (日期格式)
- ignore_above(忽略超越限制的字段)
- ignore_malformed(忽略格式不對的數據)
- index (索引)
- index_options(索引設置)
- fields(字段)
- Norms (標準信息)
- null_value(空值)
- position_increment_gap(短語位置間隙)
- properties (屬性)
- search_analyzer (搜索分析器)
- similarity (匹配方法)
- store(存儲)
- Term_vectors(詞根信息)
- Dynamic Mapping
- Dynamic field mapping(動態字段映射)
- Dynamic templates(動態模板)
- default mapping(mapping中的_default_)
- Analysis
- Anatomy of an analyzer(分析器的分析)
- Testing analyzers(測試分析器)
- Analyzers(分析器)
- Configuring built-in analyzers(配置內置分析器)
- Standard Analyzer(標準分析器)
- Simple Analyzer(簡單分析器)
- 空白分析器
- Stop Analyzer
- Keyword Analyzer
- 模式分析器
- 語言分析器
- 指紋分析器
- 自定義分析器
- Normalizers
- Tokenizers(分詞器)
- Standard Tokenizer(標準分詞器)
- Letter Tokenizer
- Lowercase Tokenizer (小寫分詞器)
- Whitespace Analyzer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer(泰語分詞器)
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Analyzer
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer(路徑層次分詞器)
- Token Filters(詞元過濾器)
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters(字符過濾器)
- HTML Strip Character Filter
- Mapping Character Filter
- Pattern Replace Character Filter
- 模塊
- Cluster
- 集群級路由和碎片分配
- 基于磁盤的分片分配
- 分片分配awareness
- 分片分配過濾
- Miscellaneous cluster settings
- Scripting
- Painless Scripting Language
- Lucene Expressions Language
- Advanced scripts using script engines
- Snapshot And Restore
- Thread Pool
- Index Modules(索引模塊)
- 預處理節點
- Pipeline Definition
- Ingest APIs
- Put Pipeline API
- Get Pipeline API
- Delete Pipeline API
- Simulate Pipeline API
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Monitoring Elasticsearch
- X-Pack APIs
- X-Pack Commands
- How To
- Testing(測試)
- Glossary of terms
- Release Notes
- X-Pack Release Notes