# fielddata(字段數據)
所有字段是默認被?[**indexed**](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/mapping-index.html)(被索引的),這使得它們是可搜索的.可以在腳本中排序,聚合和獲取字段值,但是需要不同的搜索模式.
搜索需要回答一個問題 “哪個?**document(文檔)**?包含這個?**term**(詞條)”,然而排序和聚合需要回答一個不同的問題 " 這個字段在這個?**document**(文檔)中的值是多少?".
許多字段可以使用?**index-time**,在磁盤上的?**doc_values**?支持這種數據訪問模式, 但是?**text**?字段不支持?**doc_values**。
相反,**text**?字段使用查詢時存在于內存的數據結構?**fielddata**.這個數據結構是第一次將字段用于聚合,排序,或者腳本時基于需求構建的。它是通過讀取磁盤上的每個?**segment**(片段)的整個反向索引來構建的,將?**term**(詞條)和?**document**(文檔)關系反轉,并將結果存儲在內存中,在**JVM**的堆中.
## text 字段默認關閉 Fielddata?
**Fielddata**?會消耗很多堆空間,尤其是加載高基數的?**text**?字段的時候.一旦**fielddata?**加載到堆中,它在 ?**segment**(片段)中的生命周期還是存在的.此外,加載 ?**fielddata**?是一件非常昂貴的過程,會導致用戶體驗到延遲的感覺.這就是為什么**fielddata?**默認關閉.
如果你嘗試對文本字段上的腳本進行排序,訪問值,你會看到此異常:
* **Field data?**在?**text**?字段上默認是關閉的.在**?[your_field_name]?**上設置**fielddata = true**,以便通過反轉反向索引來加載內存中的?**fielddata**。 請注意,這可能會使用顯著的內存。
## 在開啟fielddata之前
在你開啟?**fielddata?**?之前,考慮一下為什么你要在腳本中使用 ?**text?**來聚合,排序.通常這么做是沒有意義的.
在索引之前分析?**text**?字段,以至于像?**New York?**這樣的值可以通過?**new**?或者 ?**york**?來搜索.當你可能想要一個稱作 ?**New York?**?的單一bucket(桶),?**term**(詞條)在這個字段上聚合會返回一個?**new**?**bucket**和一個?**york**?**bucket**(桶).
相反,你應該使用?**text**?字段進行全文搜索,以及一個開啟?**doc_values**?的**unanalyzed**(未分析)?**[keyword](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/keyword.html)**??字段用于聚合,如下:
|
`curl -XPUT?``'localhost:9200/my_index?pretty'`?`-H?``'Content-Type: application/json'`?`-d'`
`{`
`"mappings"``: {`
`"my_type"``: {`
`"properties"``: {`
`"my_field"``: {? #?``1`
`"type"``:?``"text"``,`
`"fields"``: {`
`"keyword"``: {? #?``2`
`"type"``:?``"keyword"`
`}`
`}`
`}`
`}`
`}`
`}`
`}`
`'`
|
| 1 | 使用?**my_field**?用于搜索 |
| 2 | 使用?**my_field.keyword**?用于聚合,排序,或者腳本. |
## 開啟text 字段的fielddata
你可以使用以下的?[PUT mapping API](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/indices-put-mapping.html "Put Mapping")??給一個已經存在的?**text**?字段開啟?**fielddata**.
|
`curl -XPUT?``'localhost:9200/my_index/_mapping/my_type?pretty'`?`-H?``'Content-Type: application/json'`?`-d'`
`{`
`"properties"``: {`
`"my_field"``: {? #?``1`
`"type"``:?????``"text"``,`
`"fielddata"``:?``true`
`}`
`}`
`}`
`'`
|
| 1 | 你為?**my_field**?指定的映射應包含該字段已有的映射,再加上?**fielddata**?參數. |
建議
**fielddata.*?**參數必須在相同索引的相同名稱的字段有相同的設置.可以使用?[PUT mapping API](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/indices-put-mapping.html "Put Mapping")??在現有字段上更新其值.
Global ordinals
**Global ordinals**(全局序數)是一個基于?**field data**和?**doc_values**?的數據結構,它以字典順序每戶每個唯一?**term**(詞根)的增量編號.每個**term**(詞根)都有一個唯一的數,**term**(詞根)A是低于?**term**(詞根)B的.**Global ordinals**?(全局序數)僅在?**[`text`](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/text.html "Text datatype")**?和?**[`keyword`](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/keyword.html "Keyword datatype")**?字段中支持.
**Fielddata**?和?**doc_values**?也有 ordinals(序數),它是特定**segment**(段)和字段中所有**term**(詞根)的唯一編號**.Global ordinals**(全局序數)只是建立在?**fielddata**和?**doc_values**之上,通過在**segement ordinals**?和?**global ordinals**?之間提供映射,后者在整個**shard**(分片)中是唯一的.
**Global ordinals**?是用于使用?**segement ordinals**(片段序數)的功能,例如排序和?**terms**(詞根)聚合,以提高執行時間.**term**(詞根)聚合完全依賴于?**Global ordinals**(全局序數)來執行?**shard**?(分片)級別的聚合,然后將**global ordinals**?(全局序數)轉換為真正的?**term**(詞根),**term**(詞根)僅用于最終減少階段,其結合不同?**shard**(分片)的結果.
指定字段的?**Global ordinals**?(全局序數)與?**shard**(分片)所有的字段相關聯,而?**field data**?和?**doc_values?**與單個?**segment**(片段)相關聯.其與針對單個**segment**(段)相關聯的特定字段的字段數據不同,一旦新的**segment**(片段)變得可見,?**Global ordinals**(全局序數)就需要完全重建.
?**Global ordinals**(全局序數)取決于一個字段上的?**terms**(詞根)數量,但通常它是比較低的.因為源字符安數據已經被加載.**Global ordinals**(全局序數)的內存開銷很小,因為它被有效的壓縮.
## fielddata_frequency_filter
**Fielddata?**過濾可以用于減少加載到內存中?**term**(詞根)數量,從而減少內存使用.**term**(詞根)可以按頻率來過濾 :
頻率過濾器允許你僅加載?**document**(文檔)頻率在最小和最大值之間的?**term**(詞根),可以表示為絕對數字(當數字大于1.0時)或百分比(例如0.01為1%,1.0為100%).每個**segment**計算頻率.百分比是基于?**docs**(文檔)的數量,而不是該**segment**(片段)的所有?**docs**(文檔).
通過使用?**min_segment_size?**指定?**segment**(片段)應包含的文檔和最小數量,可以完全排除?**?small segment**?(小的片段),如下:
|
`curl -XPUT?``'localhost:9200/my_index?pretty'`?`-H?``'Content-Type: application/json'`?`-d'`
`{`
`"mappings"``: {`
`"my_type"``: {`
`"properties"``: {`
`"tag"``: {`
`"type"``:?``"text"``,`
`"fielddata"``:?``true``,`
`"fielddata_frequency_filter"``: {`
`"min"``:?``0.001``,`
`"max"``:?``0.1``,`
`"min_segment_size"``:?``500`
`}`
`}`
`}`
`}`
`}`
`}`
`'`
|
- 入門
- 基本概念
- 安裝
- 探索你的集群
- 集群健康
- 列出所有索引庫
- 創建一個索引庫
- 索引文檔創建與查詢
- 刪除一個索引庫
- 修改你的數據
- 更新文檔
- 刪除文檔
- 批量處理
- 探索你的數據
- 搜索API
- 查詢語言介紹
- 執行搜索
- 執行過濾
- 執行聚合
- 總結
- Elasticsearch設置
- 安裝Elasticsearch
- .zip或.tar.gz文件的安裝方式
- Install Elasticsearch with .zip on Windows
- Debian軟件包安裝方式
- RPM安裝方式
- Install Elasticsearch with Windows MSI Installer
- Docker安裝方式
- 配置Elasticsearch
- 安全配置
- 日志配置
- 重要的Elasticsearch配置
- 重要的系統配置
- 系統設置
- 在jvm.options中設置JVM堆大小
- 禁用swapping
- 文件描述符
- 虛擬內存
- 線程數
- DNS cache settings
- 啟動前檢查
- 堆大小檢查
- 文件描述符檢查
- 內存鎖定檢查
- 最大線程數檢查
- 最大虛擬內存檢查
- Max file size check
- 最大map數檢查
- JVM Client模式檢查
- 串行收集使用檢查
- 系統調用過濾檢查
- OnError與OnOutOfMemoryError檢查
- Early-access check
- G1GC檢查
- Elasticsearch停機
- Elasticsearch升級
- 滾動升級
- 全集群重啟升級
- 索引重建升級
- Set up X-Pack
- Installing X-Pack
- X-Pack Settings
- Watcher Settings
- Configuring Security
- Breaking changes in 6.0
- X-Pack Breaking Changes
- 重大變化
- 6.0的重大變化
- 聚合變化
- Cat API變化
- 客戶端變化
- 集群變化
- 文檔API變化
- 索引變化
- 預處理變化
- 映射變化
- Packaging變化
- Percolator變化
- 插件變化
- 索引重建變化
- 信息統計變化
- DSL查詢變化
- 設置變化
- 腳本變化
- API約定
- 多索引語法
- 索引庫名稱的日期運算
- 常用選項
- URL-based訪問控制
- 文檔APIs
- 讀寫文檔
- 索引接口
- Get接口
- Delete API
- Delete By Query API
- Update API
- Update By Query API
- Multi Get API
- Bulk API
- Reindex API
- Term Vectors
- Multi termvectors API
- ?refresh
- 搜索APIs
- Search
- URI Search
- Request Body Search
- Query
- From / Size
- Sort
- Source filtering
- Fields
- Script Fields
- Doc value Fields
- Post filter
- Highlighting
- Rescoring
- Search Type
- Scroll
- Preference
- Explain
- Version
- Index Boost
- min_score
- Named Queries
- Inner hits
- Field Collapsing
- Search After
- Search Template
- Multi Search Template
- Search Shards API
- Suggesters
- Term suggester
- Phrase Suggester
- Completion Suggester
- Context Suggester
- Returning the type of the suggester
- Multi Search API
- Count API
- Validate API
- Explain API
- Profile API
- Profiling Queries
- Profiling Aggregations
- Profiling Considerations
- Field Capabilities API
- Aggregations
- Metrics Aggregations
- 平均值聚合
- 值計數聚合(Value Count Aggregation)
- Cardinality Aggregation
- Extended Stats Aggregation
- 地理邊界聚合
- 地理重心聚合
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- 鄰接矩陣聚合
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Significant Terms Aggregation
- Filter Aggregation(過濾器聚合)
- Filters Aggregation
- Geo Distance Aggregation(地理距離聚合) 轉至元數據結尾
- GeoHash grid Aggregation(GeoHash網格聚合)
- Global Aggregation(全局聚合) 轉至元數據結尾
- Histogram Aggregation
- IP Range Aggregation(IP范圍聚合)
- Missing Aggregation
- Nested Aggregation(嵌套聚合)
- Range Aggregation(范圍聚合)
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation(導數聚合)
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation(擴展信息桶聚合)
- Percentiles Bucket Aggregation(百分數桶聚合)
- Moving Average Aggregation
- Cumulative Sum Aggregation(累積匯總聚合)
- Bucket Script Aggregation(桶腳本聚合)
- Bucket Selector Aggregation(桶選擇器聚合)
- Serial Differencing Aggregation(串行差異聚合)
- Matrix Aggregations
- Matrix Stats
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indices APIs
- Create Index /創建索引
- Delete Index /刪除索引
- Get Index /獲取索引
- Indices Exists /索引存在
- Open / Close Index API /啟動關閉索引
- Shrink Index /縮小索引
- Rollover Index/滾動索引
- Put Mapping /提交映射
- Get Mapping /獲取映射
- Get Field Mapping /獲取字段映射
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Explain Analyze
- Index Templates
- 索引統計信息
- 索引段
- 索引恢復
- 索引分片存儲
- 清理緩存
- 刷新
- 同步刷新
- 重新加載
- 強制合并
- Cat APIs
- cat aliases
- cat allocation
- cat count
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat thread pool
- cat snapshots
- cat templates
- Cluster APIs
- 集群健康
- 集群狀態
- 集群統計
- 掛起的集群任務
- 集群重新路由
- Cluster Update Settings
- Nodes Stats
- Nodes Info
- Nodes Feature Usage
- Remote Cluster Info
- Task Management API
- Nodes hot_threads
- Cluster Allocation Explain API
- Query DSL
- 查詢context與過濾context
- Match All Query
- 全文搜索
- 匹配查詢
- 短語匹配查詢
- 短語前綴匹配查詢
- 多字段查詢
- 常用術語查詢
- 查詢語句查詢
- 簡單查詢語句
- Term level queries
- Term Query
- Terms Query
- Range Query
- Exists Query
- Prefix Query
- Wildcard Query
- Regexp Query
- Fuzzy Query
- Type Query
- Ids Query
- 復合查詢
- Constant Score 查詢
- Bool 查詢
- Dis Max 查詢
- Function Score 查詢
- Boosting 查詢
- Joining queries
- Has Child Query
- Has Parent Query
- Nested Query(嵌套查詢)
- Parent Id Query
- Geo queries
- GeoShape Query(地理形狀查詢)
- Geo Bounding Box Query(地理邊框查詢)
- Geo Distance Query(地理距離查詢)
- Geo Polygon Query(地理多邊形查詢)
- Specialized queries
- More Like This Query
- Script Query
- Percolate Query
- Span queries
- Span Term 查詢
- Span Multi Term 查詢
- Span First 查詢
- Span Near 查詢
- Span Or 查詢
- Span Not 查詢
- Span Containing 查詢
- Span Within 查詢
- Span Field Masking 查詢 轉至元數據結尾
- Minimum Should Match
- Multi Term Query Rewrite
- Mapping
- Removal of mapping types
- Field datatypes
- Array
- Binary
- Range
- Boolean
- Date
- Geo-point datatype
- Geo-Shape datatype
- IP datatype
- Keyword datatype
- Nested datatype
- Numeric datatypes
- Object datatype
- Text
- Token數
- 滲濾型
- join datatype
- Meta-Fields
- _all field
- _field_names field
- _id field
- _index field
- _meta field
- _routing field
- _source field
- _type field
- _uid field
- Mapping parameters
- analyzer(分析器)
- normalizer(歸一化)
- boost(提升)
- Coerce(強制類型轉換)
- copy_to(合并參數)
- doc_values(文檔值)
- dynamic(動態設置)
- enabled(開啟字段)
- eager_global_ordinals
- fielddata(字段數據)
- format (日期格式)
- ignore_above(忽略超越限制的字段)
- ignore_malformed(忽略格式不對的數據)
- index (索引)
- index_options(索引設置)
- fields(字段)
- Norms (標準信息)
- null_value(空值)
- position_increment_gap(短語位置間隙)
- properties (屬性)
- search_analyzer (搜索分析器)
- similarity (匹配方法)
- store(存儲)
- Term_vectors(詞根信息)
- Dynamic Mapping
- Dynamic field mapping(動態字段映射)
- Dynamic templates(動態模板)
- default mapping(mapping中的_default_)
- Analysis
- Anatomy of an analyzer(分析器的分析)
- Testing analyzers(測試分析器)
- Analyzers(分析器)
- Configuring built-in analyzers(配置內置分析器)
- Standard Analyzer(標準分析器)
- Simple Analyzer(簡單分析器)
- 空白分析器
- Stop Analyzer
- Keyword Analyzer
- 模式分析器
- 語言分析器
- 指紋分析器
- 自定義分析器
- Normalizers
- Tokenizers(分詞器)
- Standard Tokenizer(標準分詞器)
- Letter Tokenizer
- Lowercase Tokenizer (小寫分詞器)
- Whitespace Analyzer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer(泰語分詞器)
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Analyzer
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer(路徑層次分詞器)
- Token Filters(詞元過濾器)
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters(字符過濾器)
- HTML Strip Character Filter
- Mapping Character Filter
- Pattern Replace Character Filter
- 模塊
- Cluster
- 集群級路由和碎片分配
- 基于磁盤的分片分配
- 分片分配awareness
- 分片分配過濾
- Miscellaneous cluster settings
- Scripting
- Painless Scripting Language
- Lucene Expressions Language
- Advanced scripts using script engines
- Snapshot And Restore
- Thread Pool
- Index Modules(索引模塊)
- 預處理節點
- Pipeline Definition
- Ingest APIs
- Put Pipeline API
- Get Pipeline API
- Delete Pipeline API
- Simulate Pipeline API
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Monitoring Elasticsearch
- X-Pack APIs
- X-Pack Commands
- How To
- Testing(測試)
- Glossary of terms
- Release Notes
- X-Pack Release Notes