# 創建TLS證書和秘鑰
## 前言
執行下列步驟前建議你先閱讀以下內容:
- [管理集群中的TLS](../guide/managing-tls-in-a-cluster.md):教您如何創建TLS證書
- [kubelet的認證授權](../guide/kubelet-authentication-authorization.md):向您描述如何通過認證授權來訪問 kubelet 的 HTTPS 端點。
- [TLS bootstrap](../guide/tls-bootstrapping.md):介紹如何為 kubelet 設置 TLS 客戶端證書引導(bootstrap)。
**注意**:這一步是在安裝配置kubernetes的所有步驟中最容易出錯也最難于排查問題的一步,而這卻剛好是第一步,萬事開頭難,不要因為這點困難就望而卻步。
**如果您足夠有信心在完全不了解自己在做什么的情況下能夠成功地完成了這一步的配置,那么您可以盡管跳過上面的幾篇文章直接進行下面的操作。**
`kubernetes` 系統的各組件需要使用 `TLS` 證書對通信進行加密,本文檔使用 `CloudFlare` 的 PKI 工具集 [cfssl](https://github.com/cloudflare/cfssl) 來生成 Certificate Authority (CA) 和其它證書;
**生成的 CA 證書和秘鑰文件如下:**
+ ca-key.pem
+ ca.pem
+ kubernetes-key.pem
+ kubernetes.pem
+ kube-proxy.pem
+ kube-proxy-key.pem
+ admin.pem
+ admin-key.pem
**使用證書的組件如下:**
+ etcd:使用 ca.pem、kubernetes-key.pem、kubernetes.pem;
+ kube-apiserver:使用 ca.pem、kubernetes-key.pem、kubernetes.pem;
+ kubelet:使用 ca.pem;
+ kube-proxy:使用 ca.pem、kube-proxy-key.pem、kube-proxy.pem;
+ kubectl:使用 ca.pem、admin-key.pem、admin.pem;
+ kube-controller-manager:使用 ca-key.pem、ca.pem
**注意:以下操作都在 master 節點即 172.20.0.113 這臺主機上執行,證書只需要創建一次即可,以后在向集群中添加新節點時只要將 /etc/kubernetes/ 目錄下的證書拷貝到新節點上即可。**
## 安裝 `CFSSL`
**方式一:直接使用二進制源碼包安裝**
``` bash
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
chmod +x cfssl_linux-amd64
mv cfssl_linux-amd64 /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
chmod +x cfssljson_linux-amd64
mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
chmod +x cfssl-certinfo_linux-amd64
mv cfssl-certinfo_linux-amd64 /usr/local/bin/cfssl-certinfo
export PATH=/usr/local/bin:$PATH
```
**方式二:使用go命令安裝**
我們的系統中安裝了Go1.7.5,使用以下命令安裝更快捷:
```bash
$ go get -u github.com/cloudflare/cfssl/cmd/...
$ echo $GOPATH
/usr/local
$ls /usr/local/bin/cfssl*
cfssl cfssl-bundle cfssl-certinfo cfssljson cfssl-newkey cfssl-scan
```
在`$GOPATH/bin`目錄下得到以cfssl開頭的幾個命令。
注意:以下文章中出現的cat的文件名如果不存在需要手工創建。
## 創建 CA (Certificate Authority)
**創建 CA 配置文件**
``` bash
mkdir /root/ssl
cd /root/ssl
cfssl print-defaults config > config.json
cfssl print-defaults csr > csr.json
# 根據config.json文件的格式創建如下的ca-config.json文件
# 過期時間設置成了 87600h
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
],
"expiry": "87600h"
}
}
}
}
EOF
```
字段說明
+ `ca-config.json`:可以定義多個 profiles,分別指定不同的過期時間、使用場景等參數;后續在簽名證書時使用某個 profile;
+ `signing`:表示該證書可用于簽名其它證書;生成的 ca.pem 證書中 `CA=TRUE`;
+ `server auth`:表示client可以用該 CA 對server提供的證書進行驗證;
+ `client auth`:表示server可以用該CA對client提供的證書進行驗證;
**創建 CA 證書簽名請求**
創建 `ca-csr.json` 文件,內容如下:
``` json
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
```
+ "CN":`Common Name`,kube-apiserver 從證書中提取該字段作為請求的用戶名 (User Name);瀏覽器使用該字段驗證網站是否合法;
+ "O":`Organization`,kube-apiserver 從證書中提取該字段作為請求用戶所屬的組 (Group);
**生成 CA 證書和私鑰**
``` bash
$ cfssl gencert -initca ca-csr.json | cfssljson -bare ca
$ ls ca*
ca-config.json ca.csr ca-csr.json ca-key.pem ca.pem
```
## 創建 kubernetes 證書
創建 kubernetes 證書簽名請求文件 `kubernetes-csr.json`:
``` json
{
"CN": "kubernetes",
"hosts": [
"127.0.0.1",
"172.20.0.112",
"172.20.0.113",
"172.20.0.114",
"172.20.0.115",
"10.254.0.1",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
```
+ 如果 hosts 字段不為空則需要指定授權使用該證書的 **IP 或域名列表**,由于該證書后續被 `etcd` 集群和 `kubernetes master` 集群使用,所以上面分別指定了 `etcd` 集群、`kubernetes master` 集群的主機 IP 和 **`kubernetes` 服務的服務 IP**(一般是 `kube-apiserver` 指定的 `service-cluster-ip-range` 網段的第一個IP,如 10.254.0.1)。
+ 這是最小化安裝的kubernetes集群,包括一個私有鏡像倉庫,三個節點的kubernetes集群,以上物理節點的IP也可以更換為主機名。
**生成 kubernetes 證書和私鑰**
``` bash
$ cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes
$ ls kubernetes*
kubernetes.csr kubernetes-csr.json kubernetes-key.pem kubernetes.pem
```
或者直接在命令行上指定相關參數:
``` bash
echo '{"CN":"kubernetes","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes -hostname="127.0.0.1,172.20.0.112,172.20.0.113,172.20.0.114,172.20.0.115,kubernetes,kubernetes.default" - | cfssljson -bare kubernetes
```
## 創建 admin 證書
創建 admin 證書簽名請求文件 `admin-csr.json`:
``` json
{
"CN": "admin",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
```
+ 后續 `kube-apiserver` 使用 `RBAC` 對客戶端(如 `kubelet`、`kube-proxy`、`Pod`)請求進行授權;
+ `kube-apiserver` 預定義了一些 `RBAC` 使用的 `RoleBindings`,如 `cluster-admin` 將 Group `system:masters` 與 Role `cluster-admin` 綁定,該 Role 授予了調用`kube-apiserver` 的**所有 API**的權限;
+ O 指定該證書的 Group 為 `system:masters`,`kubelet` 使用該證書訪問 `kube-apiserver` 時 ,由于證書被 CA 簽名,所以認證通過,同時由于證書用戶組為經過預授權的 `system:masters`,所以被授予訪問所有 API 的權限;
**注意**:這個admin 證書,是將來生成管理員用的kube config 配置文件用的,現在我們一般建議使用RBAC 來對kubernetes 進行角色權限控制, kubernetes 將證書中的CN 字段 作為User, O 字段作為 Group(具體參考[ Kubernetes中的用戶與身份認證授權](../guide/authentication.md)中 X509 Client Certs 一段)。
在搭建完 kubernetes 集群后,我們可以通過命令: `kubectl get clusterrolebinding cluster-admin -o yaml` ,查看到 `clusterrolebinding cluster-admin` 的 subjects 的 kind 是 Group,name 是 `system:masters`。 `roleRef` 對象是 `ClusterRole cluster-admin`。 意思是凡是 `system:masters Group` 的 user 或者 `serviceAccount` 都擁有 `cluster-admin` 的角色。 因此我們在使用 kubectl 命令時候,才擁有整個集群的管理權限。可以使用 `kubectl get clusterrolebinding cluster-admin -o yaml` 來查看。
```yaml
$ kubectl get clusterrolebinding cluster-admin -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
creationTimestamp: 2017-04-11T11:20:42Z
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: cluster-admin
resourceVersion: "52"
selfLink: /apis/rbac.authorization.k8s.io/v1/clusterrolebindings/cluster-admin
uid: e61b97b2-1ea8-11e7-8cd7-f4e9d49f8ed0
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group
name: system:masters
```
生成 admin 證書和私鑰:
``` bash
$ cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin
$ ls admin*
admin.csr admin-csr.json admin-key.pem admin.pem
```
## 創建 kube-proxy 證書
創建 kube-proxy 證書簽名請求文件 `kube-proxy-csr.json`:
``` json
{
"CN": "system:kube-proxy",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
```
+ CN 指定該證書的 User 為 `system:kube-proxy`;
+ `kube-apiserver` 預定義的 RoleBinding `system:node-proxier` 將User `system:kube-proxy` 與 Role `system:node-proxier` 綁定,該 Role 授予了調用 `kube-apiserver` Proxy 相關 API 的權限;
生成 kube-proxy 客戶端證書和私鑰
``` bash
$ cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
$ ls kube-proxy*
kube-proxy.csr kube-proxy-csr.json kube-proxy-key.pem kube-proxy.pem
```
## 校驗證書
以 kubernetes 證書為例
### 使用 `opsnssl` 命令
``` bash
$ openssl x509 -noout -text -in kubernetes.pem
...
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=CN, ST=BeiJing, L=BeiJing, O=k8s, OU=System, CN=Kubernetes
Validity
Not Before: Apr 5 05:36:00 2017 GMT
Not After : Apr 5 05:36:00 2018 GMT
Subject: C=CN, ST=BeiJing, L=BeiJing, O=k8s, OU=System, CN=kubernetes
...
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Key Identifier:
DD:52:04:43:10:13:A9:29:24:17:3A:0E:D7:14:DB:36:F8:6C:E0:E0
X509v3 Authority Key Identifier:
keyid:44:04:3B:60:BD:69:78:14:68:AF:A0:41:13:F6:17:07:13:63:58:CD
X509v3 Subject Alternative Name:
DNS:kubernetes, DNS:kubernetes.default, DNS:kubernetes.default.svc, DNS:kubernetes.default.svc.cluster, DNS:kubernetes.default.svc.cluster.local, IP Address:127.0.0.1, IP Address:172.20.0.112, IP Address:172.20.0.113, IP Address:172.20.0.114, IP Address:172.20.0.115, IP Address:10.254.0.1
...
```
+ 確認 `Issuer` 字段的內容和 `ca-csr.json` 一致;
+ 確認 `Subject` 字段的內容和 `kubernetes-csr.json` 一致;
+ 確認 `X509v3 Subject Alternative Name` 字段的內容和 `kubernetes-csr.json` 一致;
+ 確認 `X509v3 Key Usage、Extended Key Usage` 字段的內容和 `ca-config.json` 中 `kubernetes` profile 一致;
### 使用 `cfssl-certinfo` 命令
``` bash
$ cfssl-certinfo -cert kubernetes.pem
...
{
"subject": {
"common_name": "kubernetes",
"country": "CN",
"organization": "k8s",
"organizational_unit": "System",
"locality": "BeiJing",
"province": "BeiJing",
"names": [
"CN",
"BeiJing",
"BeiJing",
"k8s",
"System",
"kubernetes"
]
},
"issuer": {
"common_name": "Kubernetes",
"country": "CN",
"organization": "k8s",
"organizational_unit": "System",
"locality": "BeiJing",
"province": "BeiJing",
"names": [
"CN",
"BeiJing",
"BeiJing",
"k8s",
"System",
"Kubernetes"
]
},
"serial_number": "174360492872423263473151971632292895707129022309",
"sans": [
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local",
"127.0.0.1",
"10.64.3.7",
"10.254.0.1"
],
"not_before": "2017-04-05T05:36:00Z",
"not_after": "2018-04-05T05:36:00Z",
"sigalg": "SHA256WithRSA",
...
```
## 分發證書
將生成的證書和秘鑰文件(后綴名為`.pem`)拷貝到所有機器的 `/etc/kubernetes/ssl` 目錄下備用;
``` bash
mkdir -p /etc/kubernetes/ssl
cp *.pem /etc/kubernetes/ssl
```
## 參考
+ [Generate self-signed certificates](https://coreos.com/os/docs/latest/generate-self-signed-certificates.html)
+ [Client Certificates V/s Server Certificates](https://blogs.msdn.microsoft.com/kaushal/2012/02/17/client-certificates-vs-server-certificates/)
+ [數字證書及 CA 的掃盲介紹](http://blog.jobbole.com/104919/)
+ [TLS bootstrap 引導程序](../guide/tls-bootstrapping.md)
- 序言
- 云原生
- 云原生(Cloud Native)的定義
- CNCF - 云原生計算基金會簡介
- CNCF章程
- 云原生的設計哲學
- Play with Kubernetes
- 快速部署一個云原生本地實驗環境
- Kubernetes與云原生應用概覽
- 云原生應用之路——從Kubernetes到Cloud Native
- 云原生編程語言
- 云原生編程語言Ballerina
- 云原生編程語言Pulumi
- 云原生的未來
- Kubernetes架構
- 設計理念
- Etcd解析
- 開放接口
- CRI - Container Runtime Interface(容器運行時接口)
- CNI - Container Network Interface(容器網絡接口)
- CSI - Container Storage Interface(容器存儲接口)
- Kubernetes中的網絡
- Kubernetes中的網絡解析——以flannel為例
- Kubernetes中的網絡解析——以calico為例
- 具備API感知的網絡和安全性管理開源軟件Cilium
- Cilium架構設計與概念解析
- 資源對象與基本概念解析
- Pod狀態與生命周期管理
- Pod概覽
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中斷與PDB(Pod中斷預算)
- 集群資源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污點和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定義指標HPA
- 準入控制器(Admission Controller)
- 服務發現
- Service
- Ingress
- Traefik Ingress Controller
- 身份與權限控制
- ServiceAccount
- RBAC——基于角色的訪問控制
- NetworkPolicy
- 存儲
- Secret
- ConfigMap
- ConfigMap的熱更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存儲
- 集群擴展
- 使用自定義資源擴展API
- 使用CRD擴展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 資源調度
- QoS(服務質量等級)
- 用戶指南
- 資源對象配置
- 配置Pod的liveness和readiness探針
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的資源配額
- 命令使用
- Docker用戶過度到kubectl命令行指南
- kubectl命令概覽
- kubectl命令技巧大全
- 使用etcdctl訪問kubernetes數據
- 集群安全性管理
- 管理集群中的TLS
- kubelet的認證授權
- TLS bootstrap
- 創建用戶認證授權的kubeconfig文件
- IP偽裝代理
- 使用kubeconfig或token進行用戶身份認證
- Kubernetes中的用戶與身份認證授權
- Kubernetes集群安全性配置最佳實踐
- 訪問Kubernetes集群
- 訪問集群
- 使用kubeconfig文件配置跨集群認證
- 通過端口轉發訪問集群中的應用程序
- 使用service訪問群集中的應用程序
- 從外部訪問Kubernetes中的Pod
- Cabin - Kubernetes手機客戶端
- Kubernetic - Kubernetes桌面客戶端
- Kubernator - 更底層的Kubernetes UI
- 在Kubernetes中開發部署應用
- 適用于kubernetes的應用開發部署流程
- 遷移傳統應用到Kubernetes中——以Hadoop YARN為例
- 最佳實踐概覽
- 在CentOS上部署Kubernetes集群
- 創建TLS證書和秘鑰
- 創建kubeconfig文件
- 創建高可用etcd集群
- 安裝kubectl命令行工具
- 部署master節點
- 安裝flannel網絡插件
- 部署node節點
- 安裝kubedns插件
- 安裝dashboard插件
- 安裝heapster插件
- 安裝EFK插件
- 生產級的Kubernetes簡化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速構建測試集群
- 服務發現與負載均衡
- 安裝Traefik ingress
- 分布式負載測試
- 網絡和集群性能測試
- 邊緣節點配置
- 安裝Nginx ingress
- 安裝配置DNS
- 安裝配置Kube-dns
- 安裝配置CoreDNS
- 運維管理
- Master節點高可用
- 服務滾動升級
- 應用日志收集
- 配置最佳實踐
- 集群及應用監控
- 數據持久化問題
- 管理容器的計算資源
- 集群聯邦
- 存儲管理
- GlusterFS
- 使用GlusterFS做持久化存儲
- 使用Heketi作為Kubernetes的持久存儲GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存儲
- GlusterD-2.0
- Ceph
- 用Helm托管安裝Ceph集群并提供后端存儲
- 使用Ceph做持久化存儲
- 使用rbd-provisioner提供rbd持久化存儲
- OpenEBS
- 使用OpenEBS做持久化存儲
- Rook
- NFS
- 利用NFS動態提供Kubernetes后端存儲卷
- 集群與應用監控
- Heapster
- 使用Heapster獲取集群和對象的metric數據
- Prometheus
- 使用Prometheus監控kubernetes集群
- Prometheus查詢語言PromQL使用說明
- 使用Vistio監控Istio服務網格中的流量
- 分布式跟蹤
- OpenTracing
- 服務編排管理
- 使用Helm管理Kubernetes應用
- 構建私有Chart倉庫
- 持續集成與發布
- 使用Jenkins進行持續集成與發布
- 使用Drone進行持續集成與發布
- 更新與升級
- 手動升級Kubernetes集群
- 升級dashboard
- 領域應用概覽
- 微服務架構
- 微服務中的服務發現
- 使用Java構建微服務并發布到Kubernetes平臺
- Spring Boot快速開始指南
- Service Mesh 服務網格
- 企業級服務網格架構
- Service Mesh基礎
- Service Mesh技術對比
- 采納和演進
- 定制和集成
- 總結
- Istio
- 安裝并試用Istio service mesh
- 配置請求的路由規則
- 安裝和拓展Istio service mesh
- 集成虛擬機
- Istio中sidecar的注入規范及示例
- 如何參與Istio社區及注意事項
- Istio教程
- Istio免費學習資源匯總
- 深入理解Istio Service Mesh中的Envoy Sidecar注入與流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由轉發
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概覽
- 安裝Conduit
- Envoy
- Envoy的架構與基本術語
- Envoy作為前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 構建 SOFAMesh
- 大數據
- Spark standalone on Kubernetes
- 運行支持Kubernetes原生調度的Spark程序
- Serverless架構
- 理解Serverless
- FaaS-函數即服務
- OpenFaaS快速入門指南
- 邊緣計算
- 人工智能