# Kubernetes網絡和集群性能測試
## 準備
**測試環境**
在以下幾種環境下進行測試:
- Kubernetes集群node節點上通過Cluster IP方式訪問
- Kubernetes集群內部通過service訪問
- Kubernetes集群外部通過traefik ingress暴露的地址訪問
**測試地址**
Cluster IP: 10.254.149.31
Service Port:8000
Ingress Host:traefik.sample-webapp.io
**測試工具**
- [Locust](http://locust.io):一個簡單易用的用戶負載測試工具,用來測試web或其他系統能夠同時處理的并發用戶數。
- curl
- [kubemark](https://github.com/kubernetes/kubernetes/tree/master/test/e2e)
- 測試程序:sample-webapp,源碼見Github [kubernetes的分布式負載測試](https://github.com/rootsongjc/distributed-load-testing-using-kubernetes)
**測試說明**
通過向`sample-webapp`發送curl請求獲取響應時間,直接curl后的結果為:
```Bash
$ curl "http://10.254.149.31:8000/"
Welcome to the "Distributed Load Testing Using Kubernetes" sample web app
```
## 網絡延遲測試
### 場景一、 Kubernetes集群node節點上通過Cluster IP訪問
**測試命令**
```bash
curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' "http://10.254.149.31:8000/"
```
**10組測試結果**
| No | time_connect | time_starttransfer | time_total |
| ---- | ------------ | ------------------ | ---------- |
| 1 | 0.000 | 0.003 | 0.003 |
| 2 | 0.000 | 0.002 | 0.002 |
| 3 | 0.000 | 0.002 | 0.002 |
| 4 | 0.000 | 0.002 | 0.002 |
| 5 | 0.000 | 0.002 | 0.002 |
| 6 | 0.000 | 0.002 | 0.002 |
| 7 | 0.000 | 0.002 | 0.002 |
| 8 | 0.000 | 0.002 | 0.002 |
| 9 | 0.000 | 0.002 | 0.002 |
| 10 | 0.000 | 0.002 | 0.002 |
**平均響應時間:2ms**
**時間指標說明**
單位:秒
time_connect:建立到服務器的 TCP 連接所用的時間
time_starttransfer:在發出請求之后,Web 服務器返回數據的第一個字節所用的時間
time_total:完成請求所用的時間
### 場景二、Kubernetes集群內部通過service訪問
**測試命令**
```bash
curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' "http://sample-webapp:8000/"
```
**10組測試結果**
| No | time_connect | time_starttransfer | time_total |
| ---- | ------------ | ------------------ | ---------- |
| 1 | 0.004 | 0.006 | 0.006 |
| 2 | 0.004 | 0.006 | 0.006 |
| 3 | 0.004 | 0.006 | 0.006 |
| 4 | 0.004 | 0.006 | 0.006 |
| 5 | 0.004 | 0.006 | 0.006 |
| 6 | 0.004 | 0.006 | 0.006 |
| 7 | 0.004 | 0.006 | 0.006 |
| 8 | 0.004 | 0.006 | 0.006 |
| 9 | 0.004 | 0.006 | 0.006 |
| 10 | 0.004 | 0.006 | 0.006 |
**平均響應時間:6ms**
### 場景三、在公網上通過traefik ingress訪問
**測試命令**
```bash
curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' "http://traefik.sample-webapp.io" >>result
```
**10組測試結果**
| No | time_connect | time_starttransfer | time_total |
| ---- | ------------ | ------------------ | ---------- |
| 1 | 0.043 | 0.085 | 0.085 |
| 2 | 0.052 | 0.093 | 0.093 |
| 3 | 0.043 | 0.082 | 0.082 |
| 4 | 0.051 | 0.093 | 0.093 |
| 5 | 0.068 | 0.188 | 0.188 |
| 6 | 0.049 | 0.089 | 0.089 |
| 7 | 0.051 | 0.113 | 0.113 |
| 8 | 0.055 | 0.120 | 0.120 |
| 9 | 0.065 | 0.126 | 0.127 |
| 10 | 0.050 | 0.111 | 0.111 |
**平均響應時間:110ms**
### 測試結果
在這三種場景下的響應時間測試結果如下:
- Kubernetes集群node節點上通過Cluster IP方式訪問:2ms
- Kubernetes集群內部通過service訪問:6ms
- Kubernetes集群外部通過traefik ingress暴露的地址訪問:110ms
*注意:執行測試的node節點/Pod與serivce所在的pod的距離(是否在同一臺主機上),對前兩個場景可以能會有一定影響。*
## 網絡性能測試
網絡使用flannel的vxlan模式。
使用iperf進行測試。
服務端命令:
```bash
iperf -s -p 12345 -i 1 -M
```
客戶端命令:
```bash
iperf -c ${server-ip} -p 12345 -i 1 -t 10 -w 20K
```
### 場景一、主機之間
```
[ ID] Interval Transfer Bandwidth
[ 3] 0.0- 1.0 sec 598 MBytes 5.02 Gbits/sec
[ 3] 1.0- 2.0 sec 637 MBytes 5.35 Gbits/sec
[ 3] 2.0- 3.0 sec 664 MBytes 5.57 Gbits/sec
[ 3] 3.0- 4.0 sec 657 MBytes 5.51 Gbits/sec
[ 3] 4.0- 5.0 sec 641 MBytes 5.38 Gbits/sec
[ 3] 5.0- 6.0 sec 639 MBytes 5.36 Gbits/sec
[ 3] 6.0- 7.0 sec 628 MBytes 5.26 Gbits/sec
[ 3] 7.0- 8.0 sec 649 MBytes 5.44 Gbits/sec
[ 3] 8.0- 9.0 sec 638 MBytes 5.35 Gbits/sec
[ 3] 9.0-10.0 sec 652 MBytes 5.47 Gbits/sec
[ 3] 0.0-10.0 sec 6.25 GBytes 5.37 Gbits/sec
```
### 場景二、不同主機的Pod之間(使用flannel的vxlan模式)
```
[ ID] Interval Transfer Bandwidth
[ 3] 0.0- 1.0 sec 372 MBytes 3.12 Gbits/sec
[ 3] 1.0- 2.0 sec 345 MBytes 2.89 Gbits/sec
[ 3] 2.0- 3.0 sec 361 MBytes 3.03 Gbits/sec
[ 3] 3.0- 4.0 sec 397 MBytes 3.33 Gbits/sec
[ 3] 4.0- 5.0 sec 405 MBytes 3.40 Gbits/sec
[ 3] 5.0- 6.0 sec 410 MBytes 3.44 Gbits/sec
[ 3] 6.0- 7.0 sec 404 MBytes 3.39 Gbits/sec
[ 3] 7.0- 8.0 sec 408 MBytes 3.42 Gbits/sec
[ 3] 8.0- 9.0 sec 451 MBytes 3.78 Gbits/sec
[ 3] 9.0-10.0 sec 387 MBytes 3.25 Gbits/sec
[ 3] 0.0-10.0 sec 3.85 GBytes 3.30 Gbits/sec
```
### 場景三、Node與非同主機的Pod之間(使用flannel的vxlan模式)
```
[ ID] Interval Transfer Bandwidth
[ 3] 0.0- 1.0 sec 372 MBytes 3.12 Gbits/sec
[ 3] 1.0- 2.0 sec 420 MBytes 3.53 Gbits/sec
[ 3] 2.0- 3.0 sec 434 MBytes 3.64 Gbits/sec
[ 3] 3.0- 4.0 sec 409 MBytes 3.43 Gbits/sec
[ 3] 4.0- 5.0 sec 382 MBytes 3.21 Gbits/sec
[ 3] 5.0- 6.0 sec 408 MBytes 3.42 Gbits/sec
[ 3] 6.0- 7.0 sec 403 MBytes 3.38 Gbits/sec
[ 3] 7.0- 8.0 sec 423 MBytes 3.55 Gbits/sec
[ 3] 8.0- 9.0 sec 376 MBytes 3.15 Gbits/sec
[ 3] 9.0-10.0 sec 451 MBytes 3.78 Gbits/sec
[ 3] 0.0-10.0 sec 3.98 GBytes 3.42 Gbits/sec
```
### 場景四、不同主機的Pod之間(使用flannel的host-gw模式)
```
[ ID] Interval Transfer Bandwidth
[ 5] 0.0- 1.0 sec 530 MBytes 4.45 Gbits/sec
[ 5] 1.0- 2.0 sec 576 MBytes 4.84 Gbits/sec
[ 5] 2.0- 3.0 sec 631 MBytes 5.29 Gbits/sec
[ 5] 3.0- 4.0 sec 580 MBytes 4.87 Gbits/sec
[ 5] 4.0- 5.0 sec 627 MBytes 5.26 Gbits/sec
[ 5] 5.0- 6.0 sec 578 MBytes 4.85 Gbits/sec
[ 5] 6.0- 7.0 sec 584 MBytes 4.90 Gbits/sec
[ 5] 7.0- 8.0 sec 571 MBytes 4.79 Gbits/sec
[ 5] 8.0- 9.0 sec 564 MBytes 4.73 Gbits/sec
[ 5] 9.0-10.0 sec 572 MBytes 4.80 Gbits/sec
[ 5] 0.0-10.0 sec 5.68 GBytes 4.88 Gbits/sec
```
### 場景五、Node與非同主機的Pod之間(使用flannel的host-gw模式)
```
[ ID] Interval Transfer Bandwidth
[ 3] 0.0- 1.0 sec 570 MBytes 4.78 Gbits/sec
[ 3] 1.0- 2.0 sec 552 MBytes 4.63 Gbits/sec
[ 3] 2.0- 3.0 sec 598 MBytes 5.02 Gbits/sec
[ 3] 3.0- 4.0 sec 580 MBytes 4.87 Gbits/sec
[ 3] 4.0- 5.0 sec 590 MBytes 4.95 Gbits/sec
[ 3] 5.0- 6.0 sec 594 MBytes 4.98 Gbits/sec
[ 3] 6.0- 7.0 sec 598 MBytes 5.02 Gbits/sec
[ 3] 7.0- 8.0 sec 606 MBytes 5.08 Gbits/sec
[ 3] 8.0- 9.0 sec 596 MBytes 5.00 Gbits/sec
[ 3] 9.0-10.0 sec 604 MBytes 5.07 Gbits/sec
[ 3] 0.0-10.0 sec 5.75 GBytes 4.94 Gbits/sec
```
### 網絡性能對比綜述
使用Flannel的**vxlan**模式實現每個pod一個IP的方式,會比宿主機直接互聯的網絡性能損耗30%~40%,符合網上流傳的測試結論。而flannel的host-gw模式比起宿主機互連的網絡性能損耗大約是10%。
Vxlan會有一個封包解包的過程,所以會對網絡性能造成較大的損耗,而host-gw模式是直接使用路由信息,網絡損耗小,關于host-gw的架構請訪問[Flannel host-gw architecture](https://docs.openshift.com/container-platform/3.4/architecture/additional_concepts/flannel.html)。
## Kubernete的性能測試
參考[Kubernetes集群性能測試](https://supereagle.github.io/2017/03/09/kubemark/)中的步驟,對kubernetes的性能進行測試。
我的集群版本是Kubernetes1.6.0,首先克隆代碼,將kubernetes目錄復制到`$GOPATH/src/k8s.io/`下然后執行:
```bash
$ ./hack/generate-bindata.sh
/usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes
Generated bindata file : test/e2e/generated/bindata.go has 13498 test/e2e/generated/bindata.go lines of lovely automated artifacts
No changes in generated bindata file: pkg/generated/bindata.go
/usr/local/src/k8s.io/kubernetes
$ make WHAT="test/e2e/e2e.test"
...
+++ [0425 17:01:34] Generating bindata:
test/e2e/generated/gobindata_util.go
/usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes/test/e2e/generated
/usr/local/src/k8s.io/kubernetes/test/e2e/generated
+++ [0425 17:01:34] Building go targets for linux/amd64:
test/e2e/e2e.test
$ make ginkgo
+++ [0425 17:05:57] Building the toolchain targets:
k8s.io/kubernetes/hack/cmd/teststale
k8s.io/kubernetes/vendor/github.com/jteeuwen/go-bindata/go-bindata
+++ [0425 17:05:57] Generating bindata:
test/e2e/generated/gobindata_util.go
/usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes/test/e2e/generated
/usr/local/src/k8s.io/kubernetes/test/e2e/generated
+++ [0425 17:05:58] Building go targets for linux/amd64:
vendor/github.com/onsi/ginkgo/ginkgo
$ export KUBERNETES_PROVIDER=local
$ export KUBECTL_PATH=/usr/bin/kubectl
$ go run hack/e2e.go -v -test --test_args="--host=http://172.20.0.113:8080 --ginkgo.focus=\[Feature:Performance\]" >>log.txt
```
**測試結果**
```bash
Apr 25 18:27:31.461: INFO: API calls latencies: {
"apicalls": [
{
"resource": "pods",
"verb": "POST",
"latency": {
"Perc50": 2148000,
"Perc90": 13772000,
"Perc99": 14436000,
"Perc100": 0
}
},
{
"resource": "services",
"verb": "DELETE",
"latency": {
"Perc50": 9843000,
"Perc90": 11226000,
"Perc99": 12391000,
"Perc100": 0
}
},
...
Apr 25 18:27:31.461: INFO: [Result:Performance] {
"version": "v1",
"dataItems": [
{
"data": {
"Perc50": 2.148,
"Perc90": 13.772,
"Perc99": 14.436
},
"unit": "ms",
"labels": {
"Resource": "pods",
"Verb": "POST"
}
},
...
2.857: INFO: Running AfterSuite actions on all node
Apr 26 10:35:32.857: INFO: Running AfterSuite actions on node 1
Ran 2 of 606 Specs in 268.371 seconds
SUCCESS! -- 2 Passed | 0 Failed | 0 Pending | 604 Skipped PASS
Ginkgo ran 1 suite in 4m28.667870101s
Test Suite Passed
```
從kubemark輸出的日志中可以看到**API calls latencies**和**Performance**。
**日志里顯示,創建90個pod用時40秒以內,平均創建每個pod耗時0.44秒。**
### 不同type的資源類型API請求耗時分布
| Resource | Verb | 50% | 90% | 99% |
| --------- | ------ | ------- | -------- | -------- |
| services | DELETE | 8.472ms | 9.841ms | 38.226ms |
| endpoints | PUT | 1.641ms | 3.161ms | 30.715ms |
| endpoints | GET | 931μs | 10.412ms | 27.97ms |
| nodes | PATCH | 4.245ms | 11.117ms | 18.63ms |
| pods | PUT | 2.193ms | 2.619ms | 17.285ms |
從`log.txt`日志中還可以看到更多詳細請求的測試指標。

### 注意事項
測試過程中需要用到docker鏡像存儲在GCE中,需要翻墻下載,我沒看到哪里配置這個鏡像的地址。該鏡像副本已上傳時速云:
用到的鏡像有如下兩個:
- gcr.io/google_containers/pause-amd64:3.0
- gcr.io/google_containers/serve_hostname:v1.4
時速云鏡像地址:
- index.tenxcloud.com/jimmy/pause-amd64:3.0
- index.tenxcloud.com/jimmy/serve_hostname:v1.4
將鏡像pull到本地后重新打tag。
## Locust測試
請求統計
| Method | Name | # requests | # failures | Median response time | Average response time | Min response time | Max response time | Average Content Size | Requests/s |
| ------ | -------- | ---------- | ---------- | -------------------- | --------------------- | ----------------- | ----------------- | -------------------- | ---------- |
| POST | /login | 5070 | 78 | 59000 | 80551 | 11218 | 202140 | 54 | 1.17 |
| POST | /metrics | 5114232 | 85879 | 63000 | 82280 | 29518 | 331330 | 94 | 1178.77 |
| None | Total | 5119302 | 85957 | 63000 | 82279 | 11218 | 331330 | 94 | 1179.94 |
響應時間分布
| Name | # requests | 50% | 66% | 75% | 80% | 90% | 95% | 98% | 99% | 100% |
| ------------- | ---------- | ----- | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ |
| POST /login | 5070 | 59000 | 125000 | 140000 | 148000 | 160000 | 166000 | 174000 | 176000 | 202140 |
| POST /metrics | 5114993 | 63000 | 127000 | 142000 | 149000 | 160000 | 166000 | 172000 | 176000 | 331330 |
| None Total | 5120063 | 63000 | 127000 | 142000 | 149000 | 160000 | 166000 | 172000 | 176000 | 331330 |
以上兩個表格都是瞬時值。請求失敗率在2%左右。
Sample-webapp起了48個pod。
Locust模擬10萬用戶,每秒增長100個。

關于Locust的使用請參考Github:https://github.com/rootsongjc/distributed-load-testing-using-kubernetes
## 參考
- [基于 Python 的性能測試工具 locust (與 LR 的簡單對比)](https://testerhome.com/topics/4839)
- [Locust docs](http://docs.locust.io/en/latest/what-is-locust.html)
- [Kubernetes集群性能測試](https://supereagle.github.io/2017/03/09/kubemark/)
- [CoreOS是如何將Kubernetes的性能提高10倍的](http://dockone.io/article/1050)
- [運用Kubernetes進行分布式負載測試](http://www.csdn.net/article/2015-07-07/2825155)
- [Kubemark User Guide](https://github.com/kubernetes/community/blob/master/contributors/devel/kubemark-guide.md)
- [Flannel host-gw architecture](https://docs.openshift.com/container-platform/3.4/architecture/additional_concepts/flannel.html)
- 序言
- 云原生
- 云原生(Cloud Native)的定義
- CNCF - 云原生計算基金會簡介
- CNCF章程
- 云原生的設計哲學
- Play with Kubernetes
- 快速部署一個云原生本地實驗環境
- Kubernetes與云原生應用概覽
- 云原生應用之路——從Kubernetes到Cloud Native
- 云原生編程語言
- 云原生編程語言Ballerina
- 云原生編程語言Pulumi
- 云原生的未來
- Kubernetes架構
- 設計理念
- Etcd解析
- 開放接口
- CRI - Container Runtime Interface(容器運行時接口)
- CNI - Container Network Interface(容器網絡接口)
- CSI - Container Storage Interface(容器存儲接口)
- Kubernetes中的網絡
- Kubernetes中的網絡解析——以flannel為例
- Kubernetes中的網絡解析——以calico為例
- 具備API感知的網絡和安全性管理開源軟件Cilium
- Cilium架構設計與概念解析
- 資源對象與基本概念解析
- Pod狀態與生命周期管理
- Pod概覽
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中斷與PDB(Pod中斷預算)
- 集群資源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污點和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定義指標HPA
- 準入控制器(Admission Controller)
- 服務發現
- Service
- Ingress
- Traefik Ingress Controller
- 身份與權限控制
- ServiceAccount
- RBAC——基于角色的訪問控制
- NetworkPolicy
- 存儲
- Secret
- ConfigMap
- ConfigMap的熱更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存儲
- 集群擴展
- 使用自定義資源擴展API
- 使用CRD擴展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 資源調度
- QoS(服務質量等級)
- 用戶指南
- 資源對象配置
- 配置Pod的liveness和readiness探針
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的資源配額
- 命令使用
- Docker用戶過度到kubectl命令行指南
- kubectl命令概覽
- kubectl命令技巧大全
- 使用etcdctl訪問kubernetes數據
- 集群安全性管理
- 管理集群中的TLS
- kubelet的認證授權
- TLS bootstrap
- 創建用戶認證授權的kubeconfig文件
- IP偽裝代理
- 使用kubeconfig或token進行用戶身份認證
- Kubernetes中的用戶與身份認證授權
- Kubernetes集群安全性配置最佳實踐
- 訪問Kubernetes集群
- 訪問集群
- 使用kubeconfig文件配置跨集群認證
- 通過端口轉發訪問集群中的應用程序
- 使用service訪問群集中的應用程序
- 從外部訪問Kubernetes中的Pod
- Cabin - Kubernetes手機客戶端
- Kubernetic - Kubernetes桌面客戶端
- Kubernator - 更底層的Kubernetes UI
- 在Kubernetes中開發部署應用
- 適用于kubernetes的應用開發部署流程
- 遷移傳統應用到Kubernetes中——以Hadoop YARN為例
- 最佳實踐概覽
- 在CentOS上部署Kubernetes集群
- 創建TLS證書和秘鑰
- 創建kubeconfig文件
- 創建高可用etcd集群
- 安裝kubectl命令行工具
- 部署master節點
- 安裝flannel網絡插件
- 部署node節點
- 安裝kubedns插件
- 安裝dashboard插件
- 安裝heapster插件
- 安裝EFK插件
- 生產級的Kubernetes簡化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速構建測試集群
- 服務發現與負載均衡
- 安裝Traefik ingress
- 分布式負載測試
- 網絡和集群性能測試
- 邊緣節點配置
- 安裝Nginx ingress
- 安裝配置DNS
- 安裝配置Kube-dns
- 安裝配置CoreDNS
- 運維管理
- Master節點高可用
- 服務滾動升級
- 應用日志收集
- 配置最佳實踐
- 集群及應用監控
- 數據持久化問題
- 管理容器的計算資源
- 集群聯邦
- 存儲管理
- GlusterFS
- 使用GlusterFS做持久化存儲
- 使用Heketi作為Kubernetes的持久存儲GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存儲
- GlusterD-2.0
- Ceph
- 用Helm托管安裝Ceph集群并提供后端存儲
- 使用Ceph做持久化存儲
- 使用rbd-provisioner提供rbd持久化存儲
- OpenEBS
- 使用OpenEBS做持久化存儲
- Rook
- NFS
- 利用NFS動態提供Kubernetes后端存儲卷
- 集群與應用監控
- Heapster
- 使用Heapster獲取集群和對象的metric數據
- Prometheus
- 使用Prometheus監控kubernetes集群
- Prometheus查詢語言PromQL使用說明
- 使用Vistio監控Istio服務網格中的流量
- 分布式跟蹤
- OpenTracing
- 服務編排管理
- 使用Helm管理Kubernetes應用
- 構建私有Chart倉庫
- 持續集成與發布
- 使用Jenkins進行持續集成與發布
- 使用Drone進行持續集成與發布
- 更新與升級
- 手動升級Kubernetes集群
- 升級dashboard
- 領域應用概覽
- 微服務架構
- 微服務中的服務發現
- 使用Java構建微服務并發布到Kubernetes平臺
- Spring Boot快速開始指南
- Service Mesh 服務網格
- 企業級服務網格架構
- Service Mesh基礎
- Service Mesh技術對比
- 采納和演進
- 定制和集成
- 總結
- Istio
- 安裝并試用Istio service mesh
- 配置請求的路由規則
- 安裝和拓展Istio service mesh
- 集成虛擬機
- Istio中sidecar的注入規范及示例
- 如何參與Istio社區及注意事項
- Istio教程
- Istio免費學習資源匯總
- 深入理解Istio Service Mesh中的Envoy Sidecar注入與流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由轉發
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概覽
- 安裝Conduit
- Envoy
- Envoy的架構與基本術語
- Envoy作為前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 構建 SOFAMesh
- 大數據
- Spark standalone on Kubernetes
- 運行支持Kubernetes原生調度的Spark程序
- Serverless架構
- 理解Serverless
- FaaS-函數即服務
- OpenFaaS快速入門指南
- 邊緣計算
- 人工智能