<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # Kubernetes網絡和集群性能測試 ## 準備 **測試環境** 在以下幾種環境下進行測試: - Kubernetes集群node節點上通過Cluster IP方式訪問 - Kubernetes集群內部通過service訪問 - Kubernetes集群外部通過traefik ingress暴露的地址訪問 **測試地址** Cluster IP: 10.254.149.31 Service Port:8000 Ingress Host:traefik.sample-webapp.io **測試工具** - [Locust](http://locust.io):一個簡單易用的用戶負載測試工具,用來測試web或其他系統能夠同時處理的并發用戶數。 - curl - [kubemark](https://github.com/kubernetes/kubernetes/tree/master/test/e2e) - 測試程序:sample-webapp,源碼見Github [kubernetes的分布式負載測試](https://github.com/rootsongjc/distributed-load-testing-using-kubernetes) **測試說明** 通過向`sample-webapp`發送curl請求獲取響應時間,直接curl后的結果為: ```Bash $ curl "http://10.254.149.31:8000/" Welcome to the "Distributed Load Testing Using Kubernetes" sample web app ``` ## 網絡延遲測試 ### 場景一、 Kubernetes集群node節點上通過Cluster IP訪問 **測試命令** ```bash curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' "http://10.254.149.31:8000/" ``` **10組測試結果** | No | time_connect | time_starttransfer | time_total | | ---- | ------------ | ------------------ | ---------- | | 1 | 0.000 | 0.003 | 0.003 | | 2 | 0.000 | 0.002 | 0.002 | | 3 | 0.000 | 0.002 | 0.002 | | 4 | 0.000 | 0.002 | 0.002 | | 5 | 0.000 | 0.002 | 0.002 | | 6 | 0.000 | 0.002 | 0.002 | | 7 | 0.000 | 0.002 | 0.002 | | 8 | 0.000 | 0.002 | 0.002 | | 9 | 0.000 | 0.002 | 0.002 | | 10 | 0.000 | 0.002 | 0.002 | **平均響應時間:2ms** **時間指標說明** 單位:秒 time_connect:建立到服務器的 TCP 連接所用的時間 time_starttransfer:在發出請求之后,Web 服務器返回數據的第一個字節所用的時間 time_total:完成請求所用的時間 ### 場景二、Kubernetes集群內部通過service訪問 **測試命令** ```bash curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' "http://sample-webapp:8000/" ``` **10組測試結果** | No | time_connect | time_starttransfer | time_total | | ---- | ------------ | ------------------ | ---------- | | 1 | 0.004 | 0.006 | 0.006 | | 2 | 0.004 | 0.006 | 0.006 | | 3 | 0.004 | 0.006 | 0.006 | | 4 | 0.004 | 0.006 | 0.006 | | 5 | 0.004 | 0.006 | 0.006 | | 6 | 0.004 | 0.006 | 0.006 | | 7 | 0.004 | 0.006 | 0.006 | | 8 | 0.004 | 0.006 | 0.006 | | 9 | 0.004 | 0.006 | 0.006 | | 10 | 0.004 | 0.006 | 0.006 | **平均響應時間:6ms** ### 場景三、在公網上通過traefik ingress訪問 **測試命令** ```bash curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' "http://traefik.sample-webapp.io" >>result ``` **10組測試結果** | No | time_connect | time_starttransfer | time_total | | ---- | ------------ | ------------------ | ---------- | | 1 | 0.043 | 0.085 | 0.085 | | 2 | 0.052 | 0.093 | 0.093 | | 3 | 0.043 | 0.082 | 0.082 | | 4 | 0.051 | 0.093 | 0.093 | | 5 | 0.068 | 0.188 | 0.188 | | 6 | 0.049 | 0.089 | 0.089 | | 7 | 0.051 | 0.113 | 0.113 | | 8 | 0.055 | 0.120 | 0.120 | | 9 | 0.065 | 0.126 | 0.127 | | 10 | 0.050 | 0.111 | 0.111 | **平均響應時間:110ms** ### 測試結果 在這三種場景下的響應時間測試結果如下: - Kubernetes集群node節點上通過Cluster IP方式訪問:2ms - Kubernetes集群內部通過service訪問:6ms - Kubernetes集群外部通過traefik ingress暴露的地址訪問:110ms *注意:執行測試的node節點/Pod與serivce所在的pod的距離(是否在同一臺主機上),對前兩個場景可以能會有一定影響。* ## 網絡性能測試 網絡使用flannel的vxlan模式。 使用iperf進行測試。 服務端命令: ```bash iperf -s -p 12345 -i 1 -M ``` 客戶端命令: ```bash iperf -c ${server-ip} -p 12345 -i 1 -t 10 -w 20K ``` ### 場景一、主機之間 ``` [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 598 MBytes 5.02 Gbits/sec [ 3] 1.0- 2.0 sec 637 MBytes 5.35 Gbits/sec [ 3] 2.0- 3.0 sec 664 MBytes 5.57 Gbits/sec [ 3] 3.0- 4.0 sec 657 MBytes 5.51 Gbits/sec [ 3] 4.0- 5.0 sec 641 MBytes 5.38 Gbits/sec [ 3] 5.0- 6.0 sec 639 MBytes 5.36 Gbits/sec [ 3] 6.0- 7.0 sec 628 MBytes 5.26 Gbits/sec [ 3] 7.0- 8.0 sec 649 MBytes 5.44 Gbits/sec [ 3] 8.0- 9.0 sec 638 MBytes 5.35 Gbits/sec [ 3] 9.0-10.0 sec 652 MBytes 5.47 Gbits/sec [ 3] 0.0-10.0 sec 6.25 GBytes 5.37 Gbits/sec ``` ### 場景二、不同主機的Pod之間(使用flannel的vxlan模式) ``` [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 372 MBytes 3.12 Gbits/sec [ 3] 1.0- 2.0 sec 345 MBytes 2.89 Gbits/sec [ 3] 2.0- 3.0 sec 361 MBytes 3.03 Gbits/sec [ 3] 3.0- 4.0 sec 397 MBytes 3.33 Gbits/sec [ 3] 4.0- 5.0 sec 405 MBytes 3.40 Gbits/sec [ 3] 5.0- 6.0 sec 410 MBytes 3.44 Gbits/sec [ 3] 6.0- 7.0 sec 404 MBytes 3.39 Gbits/sec [ 3] 7.0- 8.0 sec 408 MBytes 3.42 Gbits/sec [ 3] 8.0- 9.0 sec 451 MBytes 3.78 Gbits/sec [ 3] 9.0-10.0 sec 387 MBytes 3.25 Gbits/sec [ 3] 0.0-10.0 sec 3.85 GBytes 3.30 Gbits/sec ``` ### 場景三、Node與非同主機的Pod之間(使用flannel的vxlan模式) ``` [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 372 MBytes 3.12 Gbits/sec [ 3] 1.0- 2.0 sec 420 MBytes 3.53 Gbits/sec [ 3] 2.0- 3.0 sec 434 MBytes 3.64 Gbits/sec [ 3] 3.0- 4.0 sec 409 MBytes 3.43 Gbits/sec [ 3] 4.0- 5.0 sec 382 MBytes 3.21 Gbits/sec [ 3] 5.0- 6.0 sec 408 MBytes 3.42 Gbits/sec [ 3] 6.0- 7.0 sec 403 MBytes 3.38 Gbits/sec [ 3] 7.0- 8.0 sec 423 MBytes 3.55 Gbits/sec [ 3] 8.0- 9.0 sec 376 MBytes 3.15 Gbits/sec [ 3] 9.0-10.0 sec 451 MBytes 3.78 Gbits/sec [ 3] 0.0-10.0 sec 3.98 GBytes 3.42 Gbits/sec ``` ### 場景四、不同主機的Pod之間(使用flannel的host-gw模式) ``` [ ID] Interval Transfer Bandwidth [ 5] 0.0- 1.0 sec 530 MBytes 4.45 Gbits/sec [ 5] 1.0- 2.0 sec 576 MBytes 4.84 Gbits/sec [ 5] 2.0- 3.0 sec 631 MBytes 5.29 Gbits/sec [ 5] 3.0- 4.0 sec 580 MBytes 4.87 Gbits/sec [ 5] 4.0- 5.0 sec 627 MBytes 5.26 Gbits/sec [ 5] 5.0- 6.0 sec 578 MBytes 4.85 Gbits/sec [ 5] 6.0- 7.0 sec 584 MBytes 4.90 Gbits/sec [ 5] 7.0- 8.0 sec 571 MBytes 4.79 Gbits/sec [ 5] 8.0- 9.0 sec 564 MBytes 4.73 Gbits/sec [ 5] 9.0-10.0 sec 572 MBytes 4.80 Gbits/sec [ 5] 0.0-10.0 sec 5.68 GBytes 4.88 Gbits/sec ``` ### 場景五、Node與非同主機的Pod之間(使用flannel的host-gw模式) ``` [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 570 MBytes 4.78 Gbits/sec [ 3] 1.0- 2.0 sec 552 MBytes 4.63 Gbits/sec [ 3] 2.0- 3.0 sec 598 MBytes 5.02 Gbits/sec [ 3] 3.0- 4.0 sec 580 MBytes 4.87 Gbits/sec [ 3] 4.0- 5.0 sec 590 MBytes 4.95 Gbits/sec [ 3] 5.0- 6.0 sec 594 MBytes 4.98 Gbits/sec [ 3] 6.0- 7.0 sec 598 MBytes 5.02 Gbits/sec [ 3] 7.0- 8.0 sec 606 MBytes 5.08 Gbits/sec [ 3] 8.0- 9.0 sec 596 MBytes 5.00 Gbits/sec [ 3] 9.0-10.0 sec 604 MBytes 5.07 Gbits/sec [ 3] 0.0-10.0 sec 5.75 GBytes 4.94 Gbits/sec ``` ### 網絡性能對比綜述 使用Flannel的**vxlan**模式實現每個pod一個IP的方式,會比宿主機直接互聯的網絡性能損耗30%~40%,符合網上流傳的測試結論。而flannel的host-gw模式比起宿主機互連的網絡性能損耗大約是10%。 Vxlan會有一個封包解包的過程,所以會對網絡性能造成較大的損耗,而host-gw模式是直接使用路由信息,網絡損耗小,關于host-gw的架構請訪問[Flannel host-gw architecture](https://docs.openshift.com/container-platform/3.4/architecture/additional_concepts/flannel.html)。 ## Kubernete的性能測試 參考[Kubernetes集群性能測試](https://supereagle.github.io/2017/03/09/kubemark/)中的步驟,對kubernetes的性能進行測試。 我的集群版本是Kubernetes1.6.0,首先克隆代碼,將kubernetes目錄復制到`$GOPATH/src/k8s.io/`下然后執行: ```bash $ ./hack/generate-bindata.sh /usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes Generated bindata file : test/e2e/generated/bindata.go has 13498 test/e2e/generated/bindata.go lines of lovely automated artifacts No changes in generated bindata file: pkg/generated/bindata.go /usr/local/src/k8s.io/kubernetes $ make WHAT="test/e2e/e2e.test" ... +++ [0425 17:01:34] Generating bindata: test/e2e/generated/gobindata_util.go /usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes/test/e2e/generated /usr/local/src/k8s.io/kubernetes/test/e2e/generated +++ [0425 17:01:34] Building go targets for linux/amd64: test/e2e/e2e.test $ make ginkgo +++ [0425 17:05:57] Building the toolchain targets: k8s.io/kubernetes/hack/cmd/teststale k8s.io/kubernetes/vendor/github.com/jteeuwen/go-bindata/go-bindata +++ [0425 17:05:57] Generating bindata: test/e2e/generated/gobindata_util.go /usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes/test/e2e/generated /usr/local/src/k8s.io/kubernetes/test/e2e/generated +++ [0425 17:05:58] Building go targets for linux/amd64: vendor/github.com/onsi/ginkgo/ginkgo $ export KUBERNETES_PROVIDER=local $ export KUBECTL_PATH=/usr/bin/kubectl $ go run hack/e2e.go -v -test --test_args="--host=http://172.20.0.113:8080 --ginkgo.focus=\[Feature:Performance\]" >>log.txt ``` **測試結果** ```bash Apr 25 18:27:31.461: INFO: API calls latencies: { "apicalls": [ { "resource": "pods", "verb": "POST", "latency": { "Perc50": 2148000, "Perc90": 13772000, "Perc99": 14436000, "Perc100": 0 } }, { "resource": "services", "verb": "DELETE", "latency": { "Perc50": 9843000, "Perc90": 11226000, "Perc99": 12391000, "Perc100": 0 } }, ... Apr 25 18:27:31.461: INFO: [Result:Performance] { "version": "v1", "dataItems": [ { "data": { "Perc50": 2.148, "Perc90": 13.772, "Perc99": 14.436 }, "unit": "ms", "labels": { "Resource": "pods", "Verb": "POST" } }, ... 2.857: INFO: Running AfterSuite actions on all node Apr 26 10:35:32.857: INFO: Running AfterSuite actions on node 1 Ran 2 of 606 Specs in 268.371 seconds SUCCESS! -- 2 Passed | 0 Failed | 0 Pending | 604 Skipped PASS Ginkgo ran 1 suite in 4m28.667870101s Test Suite Passed ``` 從kubemark輸出的日志中可以看到**API calls latencies**和**Performance**。 **日志里顯示,創建90個pod用時40秒以內,平均創建每個pod耗時0.44秒。** ### 不同type的資源類型API請求耗時分布 | Resource | Verb | 50% | 90% | 99% | | --------- | ------ | ------- | -------- | -------- | | services | DELETE | 8.472ms | 9.841ms | 38.226ms | | endpoints | PUT | 1.641ms | 3.161ms | 30.715ms | | endpoints | GET | 931μs | 10.412ms | 27.97ms | | nodes | PATCH | 4.245ms | 11.117ms | 18.63ms | | pods | PUT | 2.193ms | 2.619ms | 17.285ms | 從`log.txt`日志中還可以看到更多詳細請求的測試指標。 ![kubernetes-dashboard](https://box.kancloud.cn/f6a72c9da6a35a43e43e463787ac9aec_3266x1894.jpg) ### 注意事項 測試過程中需要用到docker鏡像存儲在GCE中,需要翻墻下載,我沒看到哪里配置這個鏡像的地址。該鏡像副本已上傳時速云: 用到的鏡像有如下兩個: - gcr.io/google_containers/pause-amd64:3.0 - gcr.io/google_containers/serve_hostname:v1.4 時速云鏡像地址: - index.tenxcloud.com/jimmy/pause-amd64:3.0 - index.tenxcloud.com/jimmy/serve_hostname:v1.4 將鏡像pull到本地后重新打tag。 ## Locust測試 請求統計 | Method | Name | # requests | # failures | Median response time | Average response time | Min response time | Max response time | Average Content Size | Requests/s | | ------ | -------- | ---------- | ---------- | -------------------- | --------------------- | ----------------- | ----------------- | -------------------- | ---------- | | POST | /login | 5070 | 78 | 59000 | 80551 | 11218 | 202140 | 54 | 1.17 | | POST | /metrics | 5114232 | 85879 | 63000 | 82280 | 29518 | 331330 | 94 | 1178.77 | | None | Total | 5119302 | 85957 | 63000 | 82279 | 11218 | 331330 | 94 | 1179.94 | 響應時間分布 | Name | # requests | 50% | 66% | 75% | 80% | 90% | 95% | 98% | 99% | 100% | | ------------- | ---------- | ----- | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | POST /login | 5070 | 59000 | 125000 | 140000 | 148000 | 160000 | 166000 | 174000 | 176000 | 202140 | | POST /metrics | 5114993 | 63000 | 127000 | 142000 | 149000 | 160000 | 166000 | 172000 | 176000 | 331330 | | None Total | 5120063 | 63000 | 127000 | 142000 | 149000 | 160000 | 166000 | 172000 | 176000 | 331330 | 以上兩個表格都是瞬時值。請求失敗率在2%左右。 Sample-webapp起了48個pod。 Locust模擬10萬用戶,每秒增長100個。 ![locust測試頁面](https://box.kancloud.cn/a33e911576bab20043991be86c947cca_2178x738.jpg) 關于Locust的使用請參考Github:https://github.com/rootsongjc/distributed-load-testing-using-kubernetes ## 參考 - [基于 Python 的性能測試工具 locust (與 LR 的簡單對比)](https://testerhome.com/topics/4839) - [Locust docs](http://docs.locust.io/en/latest/what-is-locust.html) - [Kubernetes集群性能測試](https://supereagle.github.io/2017/03/09/kubemark/) - [CoreOS是如何將Kubernetes的性能提高10倍的](http://dockone.io/article/1050) - [運用Kubernetes進行分布式負載測試](http://www.csdn.net/article/2015-07-07/2825155) - [Kubemark User Guide](https://github.com/kubernetes/community/blob/master/contributors/devel/kubemark-guide.md) - [Flannel host-gw architecture](https://docs.openshift.com/container-platform/3.4/architecture/additional_concepts/flannel.html)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看