# Envoy mesh 教程
**注意:本書中的 Service Mesh 章節已不再維護,請轉到 [istio-handbook](https://jimmysong.io/istio-handbook) 中瀏覽。**
本文是在 Kubernetes 集群中,使用 Envoy 來做 mesh,來為一個簡單的使用 Python 編寫的 Flask 應用程序做反向代理和負載均衡。
**注**:本教程中的示例來自 [envoy-steps](https://github.com/datawire/envoy-steps),本文中使用的所有的代碼和 YAML 配置見 [envoy-tutorial](https://github.com/rootsongjc/envoy-tutorial)。

## 前提條件
使用 [kubernetes-vagrant-centos-cluster](https://github.com/rootsongjc/kubernetes-vagrant-centos-cluster) 部署 kubernetes 集群,只要啟動集群并安裝了 CoreDNS 即可,無須安裝其他插件。
## 部署應用
我們首先將應用部署到 Kubernetes 中。
部署 postgres 數據庫。
```bash
kubectl apply -f postgres
```
創建 usersvc 鏡像。
```bash
docker build -t jimmysong/usersvc:step1 .
```
部署 usersvc。
```bash
kubectl apply -f usersvc
```
查看 uservc 的 ClusterIP 地址。
```bash
$ kubectl get svc usersvc
kubectl get svc usersvc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
usersvc ClusterIP 10.254.176.248 <none> 5000/TCP 11m
```
進到 node1 中訪問該服務,因為我們要訪問的是 ClusterIP,在我們自己的電腦上是無法直接訪問的,所以進到虛擬機中操作。
```bash
$ vagrant ssh node1
$ curl 10.254.176.248:5000
{
"hostname": "usersvc-7cf5bb9d85-9gx7w",
"msg": "user health check OK",
"ok": true,
"resolvedname": "172.33.10.7"
}
```
嘗試添加一個名為 `Alice` 的用戶。
```bash
$ curl -X PUT -H "Content-Type: application/json" \
-d '{ "fullname": "Alice", "password": "alicerules" }' \
10.254.176.248/user/alice
```
將會看到類似如下的輸出。
```json
{
"fullname": "Alice",
"hostname": "usersvc-7cf5bb9d85-9gx7w",
"ok": true,
"resolvedname": "172.33.10.7",
"uuid": "EF43B475F65848C6BE708F436305864B"
}
```
嘗試再添加一個名為 `Bob` 的用戶。
```bash
$ curl -X PUT -H "Content-Type: application/json" \
-d '{ "fullname": "Bob", "password": "bobrules" }' \
10.254.176.248/user/bob
```
將會看到類似如下的輸出。
```json
{
"fullname": "Bob",
"hostname": "usersvc-7cf5bb9d85-9gx7w",
"ok": true,
"resolvedname": "172.33.10.7",
"uuid": "6AC944E7D4254D9A811A82C0FDAC3046"
}
```
當應用部署完畢后,我們該部署 edge envoy 了。
## 部署 edge envoy
部署 edge envoy 的方式很簡單,執行下面的命令。
```bash
kubectl apply -f edge-envoy
```
現在訪問 edge envoy 是就可以路由到 `usersvc` 上的,當然直接訪問 `usersvc` 也是可以的。
我們看下 edge-envoy 的 envoy 配置文件定義。
```json
{
"listeners": [
{
"address": "tcp://0.0.0.0:80",
"filters": [
{
"type": "read",
"name": "http_connection_manager",
"config": {
"codec_type": "auto",
"stat_prefix": "ingress_http",
"route_config": {
"virtual_hosts": [
{
"name": "backend",
"domains": ["*"],
"routes": [
{
"timeout_ms": 0,
"prefix": "/user",
"cluster": "usersvc"
}
]
}
]
},
"filters": [
{
"type": "decoder",
"name": "router",
"config": {}
}
]
}
}
]
}
],
"admin": {
"access_log_path": "/dev/null",
"address": "tcp://127.0.0.1:8001"
},
"cluster_manager": {
"clusters": [
{
"name": "usersvc",
"connect_timeout_ms": 250,
"type": "strict_dns",
"service_name": "usersvc",
"lb_type": "round_robin",
"features": "http2",
"hosts": [
{
"url": "tcp://usersvc:80"
}
]
}
]
}
}
```
客戶端訪問 `edge-envoy` 的 `ClusterIP:8000/user/health` 就可以檢查節點的健康狀況。
## 部署 usersvc2
刪除原來的 `usersvc`,部署第二版 `usersvc2`,它與原來的 `usersvc` 唯一不同的地方是在 `entrypoint` 中集成了 envoy,查看 `Dockerfile` 中指定的 `entrypoint.sh` 的內容便可知。
```bash
#!/bin/sh
python /application/service.py &
/usr/local/bin/envoy -c /application/envoy.json
```
首先刪除老的 `usersvc`。
```bash
kubectl delete -f usersvc
```
使用下面的命令部署 `usersvc2`,它仍然使用 `usersvc` 這個 service 名稱。
```bash
kubectl apply -f usersvc2
```
Envoy 以 out-of-process 的方式運行,對應用進程沒有侵入性,也可以使用 sidecar 的方式運行,讓 envoy 與 應用容器運行在同一個 pod 中。
增加 `usersvc2` 的實例個數。
```bash
kubectl scale --replicas=3 deployment/usersvc
```
此時我們有 3 個 usersvc 實例,現在通過 `edge-envoy` 的 `ClusterIP:8000/user/health` 檢查節點的健康狀況時,是不是會輪詢的訪問到后端的的 `usersvc2` 的實例呢?
我們當初在 `edge-node` 的 `envoy.json` 中配置過 cluster 的,其中指定了 `lb_type` 為 `round_robin` 。
```json
"cluster_manager": {
"clusters": [
{
"name": "usersvc",
"connect_timeout_ms": 250,
"type": "strict_dns",
"service_name": "usersvc",
"lb_type": "round_robin",
"features": "http2",
"hosts": [
{
"url": "tcp://usersvc:80"
}
]
}
]
}
```
而且該 `serivce_name` 也可以被 DNS 正確解析。
```bash
root@usersvc-55b6857d44-gcg5c:/application# nslookup usersvc
Server: 10.254.0.2
Address: 10.254.0.2#53
Name: usersvc.envoy-tutorial.svc.cluster.local
Address: 10.254.123.166
```
**答案是否定的。**
雖然通過 DNS 可以正確的解析出 serivce 的 ClusterIP,但是負載均衡不再通過 kube-proxy 實現,所以不論我們訪問多少次 `edge-envoy` 永遠只能訪問到一個固定的后端 `usersvc`。
## 服務發現服務 - SDS
Kubernetes 中的 DNS 可以發現所有 serivce 的 ClusterIP,但是 DNS 中不包括所有 endpoint 地址,我們需要一個 SDS(服務發現服務)來發現服務的所有的 endpoint,我們將修改 `lb_type`,使用 `sds` 替代 `strict_dns`。
執行下面的命令部署 SDS。
```bash
kubectl apply -f usersvc-sds
```
因為在添加了 SDS 之后需要修改 `edge-envoy` 中的 `envoy.josn` 配置,在 `clusters` 字段中增加 `sds` 信息,我們將所有的配置都寫好了,重新打包成了鏡像,我們需要先刪除之前部署的 `edge-envoy`。
```bash
kubectl delete -f edge-envoy
```
部署新的 `edge-envoy2`。
```bash
kubectl apply -f edge-envoy2
```
連續訪問 `usersvc` 12 次看看輸出結果如何。
```bash
URL=http://172.17.8.101:30800/user/alice
for i in `seq 1 12`;do curl -s $URL|grep "resolvedname"|tr -d " "|tr -d ","|tr -d '"';done
```
我們可以看到類似如下的輸出:
```ini
resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2
resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2
resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2
resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2
```
再查看下 `usersvc` 服務的所有 pod 的 IP 地址。
```bash
$ kubectl get pod -l service=usersvc -o wide
NAME READY STATUS RESTARTS AGE IP NODE
usersvc-55b6857d44-mkfpv 1/1 Running 0 9m 172.33.88.2 node1
usersvc-55b6857d44-q98jg 1/1 Running 0 9m 172.33.71.2 node2
usersvc-55b6857d44-s2znk 1/1 Running 0 9m 172.33.10.2 node3
```
我們看到 round-robin 負載均衡生效了。
## 參考
- [Part 2: Deploying Envoy with a Python Flask webapp and Kubernetes](https://www.datawire.io/envoyproxy/envoy-flask-kubernetes/)
- [envoy-steps](https://github.com/datawire/envoy-steps)
- [kubernetes-vagrant-centos-cluster](https://github.com/rootsongjc/kubernetes-vagrant-centos-cluster)
- [envoy-tutorial](https://github.com/rootsongjc/envoy-tutorial)
- 序言
- 云原生
- 云原生(Cloud Native)的定義
- CNCF - 云原生計算基金會簡介
- CNCF章程
- 云原生的設計哲學
- Play with Kubernetes
- 快速部署一個云原生本地實驗環境
- Kubernetes與云原生應用概覽
- 云原生應用之路——從Kubernetes到Cloud Native
- 云原生編程語言
- 云原生編程語言Ballerina
- 云原生編程語言Pulumi
- 云原生的未來
- Kubernetes架構
- 設計理念
- Etcd解析
- 開放接口
- CRI - Container Runtime Interface(容器運行時接口)
- CNI - Container Network Interface(容器網絡接口)
- CSI - Container Storage Interface(容器存儲接口)
- Kubernetes中的網絡
- Kubernetes中的網絡解析——以flannel為例
- Kubernetes中的網絡解析——以calico為例
- 具備API感知的網絡和安全性管理開源軟件Cilium
- Cilium架構設計與概念解析
- 資源對象與基本概念解析
- Pod狀態與生命周期管理
- Pod概覽
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中斷與PDB(Pod中斷預算)
- 集群資源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污點和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定義指標HPA
- 準入控制器(Admission Controller)
- 服務發現
- Service
- Ingress
- Traefik Ingress Controller
- 身份與權限控制
- ServiceAccount
- RBAC——基于角色的訪問控制
- NetworkPolicy
- 存儲
- Secret
- ConfigMap
- ConfigMap的熱更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存儲
- 集群擴展
- 使用自定義資源擴展API
- 使用CRD擴展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 資源調度
- QoS(服務質量等級)
- 用戶指南
- 資源對象配置
- 配置Pod的liveness和readiness探針
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的資源配額
- 命令使用
- Docker用戶過度到kubectl命令行指南
- kubectl命令概覽
- kubectl命令技巧大全
- 使用etcdctl訪問kubernetes數據
- 集群安全性管理
- 管理集群中的TLS
- kubelet的認證授權
- TLS bootstrap
- 創建用戶認證授權的kubeconfig文件
- IP偽裝代理
- 使用kubeconfig或token進行用戶身份認證
- Kubernetes中的用戶與身份認證授權
- Kubernetes集群安全性配置最佳實踐
- 訪問Kubernetes集群
- 訪問集群
- 使用kubeconfig文件配置跨集群認證
- 通過端口轉發訪問集群中的應用程序
- 使用service訪問群集中的應用程序
- 從外部訪問Kubernetes中的Pod
- Cabin - Kubernetes手機客戶端
- Kubernetic - Kubernetes桌面客戶端
- Kubernator - 更底層的Kubernetes UI
- 在Kubernetes中開發部署應用
- 適用于kubernetes的應用開發部署流程
- 遷移傳統應用到Kubernetes中——以Hadoop YARN為例
- 最佳實踐概覽
- 在CentOS上部署Kubernetes集群
- 創建TLS證書和秘鑰
- 創建kubeconfig文件
- 創建高可用etcd集群
- 安裝kubectl命令行工具
- 部署master節點
- 安裝flannel網絡插件
- 部署node節點
- 安裝kubedns插件
- 安裝dashboard插件
- 安裝heapster插件
- 安裝EFK插件
- 生產級的Kubernetes簡化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速構建測試集群
- 服務發現與負載均衡
- 安裝Traefik ingress
- 分布式負載測試
- 網絡和集群性能測試
- 邊緣節點配置
- 安裝Nginx ingress
- 安裝配置DNS
- 安裝配置Kube-dns
- 安裝配置CoreDNS
- 運維管理
- Master節點高可用
- 服務滾動升級
- 應用日志收集
- 配置最佳實踐
- 集群及應用監控
- 數據持久化問題
- 管理容器的計算資源
- 集群聯邦
- 存儲管理
- GlusterFS
- 使用GlusterFS做持久化存儲
- 使用Heketi作為Kubernetes的持久存儲GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存儲
- GlusterD-2.0
- Ceph
- 用Helm托管安裝Ceph集群并提供后端存儲
- 使用Ceph做持久化存儲
- 使用rbd-provisioner提供rbd持久化存儲
- OpenEBS
- 使用OpenEBS做持久化存儲
- Rook
- NFS
- 利用NFS動態提供Kubernetes后端存儲卷
- 集群與應用監控
- Heapster
- 使用Heapster獲取集群和對象的metric數據
- Prometheus
- 使用Prometheus監控kubernetes集群
- Prometheus查詢語言PromQL使用說明
- 使用Vistio監控Istio服務網格中的流量
- 分布式跟蹤
- OpenTracing
- 服務編排管理
- 使用Helm管理Kubernetes應用
- 構建私有Chart倉庫
- 持續集成與發布
- 使用Jenkins進行持續集成與發布
- 使用Drone進行持續集成與發布
- 更新與升級
- 手動升級Kubernetes集群
- 升級dashboard
- 領域應用概覽
- 微服務架構
- 微服務中的服務發現
- 使用Java構建微服務并發布到Kubernetes平臺
- Spring Boot快速開始指南
- Service Mesh 服務網格
- 企業級服務網格架構
- Service Mesh基礎
- Service Mesh技術對比
- 采納和演進
- 定制和集成
- 總結
- Istio
- 安裝并試用Istio service mesh
- 配置請求的路由規則
- 安裝和拓展Istio service mesh
- 集成虛擬機
- Istio中sidecar的注入規范及示例
- 如何參與Istio社區及注意事項
- Istio教程
- Istio免費學習資源匯總
- 深入理解Istio Service Mesh中的Envoy Sidecar注入與流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由轉發
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概覽
- 安裝Conduit
- Envoy
- Envoy的架構與基本術語
- Envoy作為前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 構建 SOFAMesh
- 大數據
- Spark standalone on Kubernetes
- 運行支持Kubernetes原生調度的Spark程序
- Serverless架構
- 理解Serverless
- FaaS-函數即服務
- OpenFaaS快速入門指南
- 邊緣計算
- 人工智能