# 安裝kubedns插件
官方的yaml文件目錄:`kubernetes/cluster/addons/dns`。
該插件直接使用kubernetes部署,官方的配置文件中包含以下鏡像:
gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1
gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1
gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1
我clone了上述鏡像,上傳到我的私有鏡像倉庫:
```
harbor-001.jimmysong.io/library/k8s-dns-dnsmasq-nanny-amd64:1.14.1
harbor-001.jimmysong.io/library/k8s-dns-kube-dns-amd64:1.14.1
harbor-001.jimmysong.io/library/k8s-dns-sidecar-amd64:1.14.1
```
同時上傳了一份到時速云備份:
```
index.tenxcloud.com/jimmy/k8s-dns-dnsmasq-nanny-amd64:1.14.1
index.tenxcloud.com/jimmy/k8s-dns-kube-dns-amd64:1.14.1
index.tenxcloud.com/jimmy/k8s-dns-sidecar-amd64:1.14.1
```
以下yaml配置文件中使用的是私有鏡像倉庫中的鏡像。
```
kubedns-cm.yaml
kubedns-sa.yaml
kubedns-controller.yaml
kubedns-svc.yaml
```
已經修改好的 yaml 文件見:[../manifests/kubedns](https://github.com/rootsongjc/kubernetes-handbook/blob/master/manifests/kubedns)
## 系統預定義的 RoleBinding
預定義的 RoleBinding `system:kube-dns` 將 kube-system 命名空間的 `kube-dns` ServiceAccount 與 `system:kube-dns` Role 綁定, 該 Role 具有訪問 kube-apiserver DNS 相關 API 的權限;
```Bash
$ kubectl get clusterrolebindings system:kube-dns -o yaml
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
creationTimestamp: 2017-04-11T11:20:42Z
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:kube-dns
resourceVersion: "58"
selfLink: /apis/rbac.authorization.k8s.io/v1beta1/clusterrolebindingssystem%3Akube-dns
uid: e61f4d92-1ea8-11e7-8cd7-f4e9d49f8ed0
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:kube-dns
subjects:
- kind: ServiceAccount
name: kube-dns
namespace: kube-system
```
`kubedns-controller.yaml` 中定義的 Pods 時使用了 `kubedns-sa.yaml` 文件定義的 `kube-dns` ServiceAccount,所以具有訪問 kube-apiserver DNS 相關 API 的權限。
## 配置 kube-dns ServiceAccount
無需修改。
## 配置 `kube-dns` 服務
``` bash
$ diff kubedns-svc.yaml.base kubedns-svc.yaml
30c30
< clusterIP: __PILLAR__DNS__SERVER__
---
> clusterIP: 10.254.0.2
```
+ spec.clusterIP = 10.254.0.2,即明確指定了 kube-dns Service IP,這個 IP 需要和 kubelet 的 `--cluster-dns` 參數值一致;
## 配置 `kube-dns` Deployment
``` bash
$ diff kubedns-controller.yaml.base kubedns-controller.yaml
58c58
< image: gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1
---
> image: harbor-001.jimmysong.io/library/k8s-dns-kube-dns-amd64:v1.14.1
88c88
< - --domain=__PILLAR__DNS__DOMAIN__.
---
> - --domain=cluster.local.
92c92
< __PILLAR__FEDERATIONS__DOMAIN__MAP__
---
> #__PILLAR__FEDERATIONS__DOMAIN__MAP__
110c110
< image: gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1
---
> image: harbor-001.jimmysong.io/library/k8s-dns-dnsmasq-nanny-amd64:v1.14.1
129c129
< - --server=/__PILLAR__DNS__DOMAIN__/127.0.0.1#10053
---
> - --server=/cluster.local./127.0.0.1#10053
148c148
< image: gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1
---
> image: harbor-001.jimmysong.io/library/k8s-dns-sidecar-amd64:v1.14.1
161,162c161,162
< - --probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.__PILLAR__DNS__DOMAIN__,5,A
< - --probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.__PILLAR__DNS__DOMAIN__,5,A
---
> - --probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.cluster.local.,5,A
> - --probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.cluster.local.,5,A
```
+ 使用系統已經做了 RoleBinding 的 `kube-dns` ServiceAccount,該賬戶具有訪問 kube-apiserver DNS 相關 API 的權限;
## 執行所有定義文件
``` bash
$ pwd
/root/kubedns
$ ls *.yaml
kubedns-cm.yaml kubedns-controller.yaml kubedns-sa.yaml kubedns-svc.yaml
$ kubectl create -f .
```
## 檢查 kubedns 功能
新建一個 Deployment
``` bash
$ cat >> my-nginx.yaml << EOF
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: my-nginx
spec:
replicas: 2
template:
metadata:
labels:
run: my-nginx
spec:
containers:
- name: my-nginx
image: harbor-001.jimmysong.io/library/nginx:1.9
ports:
- containerPort: 80
EOF
$ kubectl create -f my-nginx.yaml
```
Export 該 Deployment, 生成 `my-nginx` 服務
``` bash
$ kubectl expose deploy my-nginx
$ kubectl get services --all-namespaces |grep my-nginx
default my-nginx 10.254.179.239 <none> 80/TCP 42m
```
創建另一個 Pod,查看 `/etc/resolv.conf` 是否包含 `kubelet` 配置的 `--cluster-dns` 和 `--cluster-domain`,是否能夠將服務 `my-nginx` 解析到 Cluster IP `10.254.179.239`。
``` bash
$ kubectl create -f nginx-pod.yaml
$ kubectl exec nginx -i -t -- /bin/bash
root@nginx:/# cat /etc/resolv.conf
nameserver 10.254.0.2
search default.svc.cluster.local. svc.cluster.local. cluster.local. jimmysong.io
options ndots:5
root@nginx:/# ping my-nginx
PING my-nginx.default.svc.cluster.local (10.254.179.239): 56 data bytes
76 bytes from 119.147.223.109: Destination Net Unreachable
^C--- my-nginx.default.svc.cluster.local ping statistics ---
root@nginx:/# ping kubernetes
PING kubernetes.default.svc.cluster.local (10.254.0.1): 56 data bytes
^C--- kubernetes.default.svc.cluster.local ping statistics ---
11 packets transmitted, 0 packets received, 100% packet loss
root@nginx:/# ping kube-dns.kube-system.svc.cluster.local
PING kube-dns.kube-system.svc.cluster.local (10.254.0.2): 56 data bytes
^C--- kube-dns.kube-system.svc.cluster.local ping statistics ---
6 packets transmitted, 0 packets received, 100% packet loss
```
從結果來看,service名稱可以正常解析。
**注意**:直接ping ClusterIP是ping不通的,ClusterIP是根據**IPtables**路由到服務的endpoint上,只有結合ClusterIP加端口才能訪問到對應的服務。
- 序言
- 云原生
- 云原生(Cloud Native)的定義
- CNCF - 云原生計算基金會簡介
- CNCF章程
- 云原生的設計哲學
- Play with Kubernetes
- 快速部署一個云原生本地實驗環境
- Kubernetes與云原生應用概覽
- 云原生應用之路——從Kubernetes到Cloud Native
- 云原生編程語言
- 云原生編程語言Ballerina
- 云原生編程語言Pulumi
- 云原生的未來
- Kubernetes架構
- 設計理念
- Etcd解析
- 開放接口
- CRI - Container Runtime Interface(容器運行時接口)
- CNI - Container Network Interface(容器網絡接口)
- CSI - Container Storage Interface(容器存儲接口)
- Kubernetes中的網絡
- Kubernetes中的網絡解析——以flannel為例
- Kubernetes中的網絡解析——以calico為例
- 具備API感知的網絡和安全性管理開源軟件Cilium
- Cilium架構設計與概念解析
- 資源對象與基本概念解析
- Pod狀態與生命周期管理
- Pod概覽
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中斷與PDB(Pod中斷預算)
- 集群資源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污點和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定義指標HPA
- 準入控制器(Admission Controller)
- 服務發現
- Service
- Ingress
- Traefik Ingress Controller
- 身份與權限控制
- ServiceAccount
- RBAC——基于角色的訪問控制
- NetworkPolicy
- 存儲
- Secret
- ConfigMap
- ConfigMap的熱更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存儲
- 集群擴展
- 使用自定義資源擴展API
- 使用CRD擴展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 資源調度
- QoS(服務質量等級)
- 用戶指南
- 資源對象配置
- 配置Pod的liveness和readiness探針
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的資源配額
- 命令使用
- Docker用戶過度到kubectl命令行指南
- kubectl命令概覽
- kubectl命令技巧大全
- 使用etcdctl訪問kubernetes數據
- 集群安全性管理
- 管理集群中的TLS
- kubelet的認證授權
- TLS bootstrap
- 創建用戶認證授權的kubeconfig文件
- IP偽裝代理
- 使用kubeconfig或token進行用戶身份認證
- Kubernetes中的用戶與身份認證授權
- Kubernetes集群安全性配置最佳實踐
- 訪問Kubernetes集群
- 訪問集群
- 使用kubeconfig文件配置跨集群認證
- 通過端口轉發訪問集群中的應用程序
- 使用service訪問群集中的應用程序
- 從外部訪問Kubernetes中的Pod
- Cabin - Kubernetes手機客戶端
- Kubernetic - Kubernetes桌面客戶端
- Kubernator - 更底層的Kubernetes UI
- 在Kubernetes中開發部署應用
- 適用于kubernetes的應用開發部署流程
- 遷移傳統應用到Kubernetes中——以Hadoop YARN為例
- 最佳實踐概覽
- 在CentOS上部署Kubernetes集群
- 創建TLS證書和秘鑰
- 創建kubeconfig文件
- 創建高可用etcd集群
- 安裝kubectl命令行工具
- 部署master節點
- 安裝flannel網絡插件
- 部署node節點
- 安裝kubedns插件
- 安裝dashboard插件
- 安裝heapster插件
- 安裝EFK插件
- 生產級的Kubernetes簡化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速構建測試集群
- 服務發現與負載均衡
- 安裝Traefik ingress
- 分布式負載測試
- 網絡和集群性能測試
- 邊緣節點配置
- 安裝Nginx ingress
- 安裝配置DNS
- 安裝配置Kube-dns
- 安裝配置CoreDNS
- 運維管理
- Master節點高可用
- 服務滾動升級
- 應用日志收集
- 配置最佳實踐
- 集群及應用監控
- 數據持久化問題
- 管理容器的計算資源
- 集群聯邦
- 存儲管理
- GlusterFS
- 使用GlusterFS做持久化存儲
- 使用Heketi作為Kubernetes的持久存儲GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存儲
- GlusterD-2.0
- Ceph
- 用Helm托管安裝Ceph集群并提供后端存儲
- 使用Ceph做持久化存儲
- 使用rbd-provisioner提供rbd持久化存儲
- OpenEBS
- 使用OpenEBS做持久化存儲
- Rook
- NFS
- 利用NFS動態提供Kubernetes后端存儲卷
- 集群與應用監控
- Heapster
- 使用Heapster獲取集群和對象的metric數據
- Prometheus
- 使用Prometheus監控kubernetes集群
- Prometheus查詢語言PromQL使用說明
- 使用Vistio監控Istio服務網格中的流量
- 分布式跟蹤
- OpenTracing
- 服務編排管理
- 使用Helm管理Kubernetes應用
- 構建私有Chart倉庫
- 持續集成與發布
- 使用Jenkins進行持續集成與發布
- 使用Drone進行持續集成與發布
- 更新與升級
- 手動升級Kubernetes集群
- 升級dashboard
- 領域應用概覽
- 微服務架構
- 微服務中的服務發現
- 使用Java構建微服務并發布到Kubernetes平臺
- Spring Boot快速開始指南
- Service Mesh 服務網格
- 企業級服務網格架構
- Service Mesh基礎
- Service Mesh技術對比
- 采納和演進
- 定制和集成
- 總結
- Istio
- 安裝并試用Istio service mesh
- 配置請求的路由規則
- 安裝和拓展Istio service mesh
- 集成虛擬機
- Istio中sidecar的注入規范及示例
- 如何參與Istio社區及注意事項
- Istio教程
- Istio免費學習資源匯總
- 深入理解Istio Service Mesh中的Envoy Sidecar注入與流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由轉發
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概覽
- 安裝Conduit
- Envoy
- Envoy的架構與基本術語
- Envoy作為前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 構建 SOFAMesh
- 大數據
- Spark standalone on Kubernetes
- 運行支持Kubernetes原生調度的Spark程序
- Serverless架構
- 理解Serverless
- FaaS-函數即服務
- OpenFaaS快速入門指南
- 邊緣計算
- 人工智能