# 利用NFS動態提供Kubernetes后端存儲卷
本文翻譯自nfs-client-provisioner的[說明文檔](https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client),本文將介紹使用nfs-client-provisioner這個應用,利用NFS Server給Kubernetes作為持久存儲的后端,并且動態提供PV。前提條件是有已經安裝好的NFS服務器,并且NFS服務器與Kubernetes的Slave節點都能網絡連通。
所有下文用到的文件來自于`git clone https://github.com/kubernetes-incubator/external-storage.git`的nfs-client目錄。
## nfs-client-provisioner
nfs-client-provisioner 是一個Kubernetes的簡易NFS的外部provisioner,本身不提供NFS,需要現有的NFS服務器提供存儲
- PV以 `${namespace}-${pvcName}-${pvName}`的命名格式提供(在NFS服務器上)
- PV回收的時候以 `archieved-${namespace}-${pvcName}-${pvName}` 的命名格式(在NFS服務器上)
## 安裝部署
- 修改deployment文件并部署 `deploy/deployment.yaml`
需要修改的地方只有NFS服務器所在的IP地址(10.10.10.60),以及NFS服務器共享的路徑(`/ifs/kubernetes`),兩處都需要修改為你實際的NFS服務器和共享目錄
```yaml
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
name: nfs-client-provisioner
spec:
replicas: 1
strategy:
type: Recreate
template:
metadata:
labels:
app: nfs-client-provisioner
spec:
serviceAccountName: nfs-client-provisioner
containers:
- name: nfs-client-provisioner
image: quay.io/external_storage/nfs-client-provisioner:latest
volumeMounts:
- name: nfs-client-root
mountPath: /persistentvolumes
env:
- name: PROVISIONER_NAME
value: fuseim.pri/ifs
- name: NFS_SERVER
value: 10.10.10.60
- name: NFS_PATH
value: /ifs/kubernetes
volumes:
- name: nfs-client-root
nfs:
server: 10.10.10.60
path: /ifs/kubernetes
```
- 修改StorageClass文件并部署 `deploy/class.yaml`
此處可以不修改,或者修改provisioner的名字,需要與上面的deployment的PROVISIONER_NAME名字一致。
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: managed-nfs-storage
provisioner: fuseim.pri/ifs
```
## 授權
如果您的集群啟用了RBAC,或者您正在運行OpenShift,則必須授權provisioner。 如果你在非默認的“default”名稱空間/項目之外部署,可以編輯`deploy/auth/clusterrolebinding.yaml`或編輯`oadm policy“指令。
### 如果啟用了RBAC
需要執行如下的命令來授權。
```bash
$ kubectl create -f deploy/auth/serviceaccount.yaml
serviceaccount "nfs-client-provisioner" created
$ kubectl create -f deploy/auth/clusterrole.yaml
clusterrole "nfs-client-provisioner-runner" created
$ kubectl create -f deploy/auth/clusterrolebinding.yaml
clusterrolebinding "run-nfs-client-provisioner" created
$ kubectl patch deployment nfs-client-provisioner -p '{"spec":{"template":{"spec":{"serviceAccount":"nfs-client-provisioner"}}}}'
```
## 測試
測試創建PVC
- `kubectl create -f deploy/test-claim.yaml`
測試創建POD
- `kubectl create -f deploy/test-pod.yaml`
在NFS服務器上的共享目錄下的卷子目錄中檢查創建的NFS PV卷下是否有"SUCCESS" 文件。
刪除測試POD
- `kubectl delete -f deploy/test-pod.yaml`
刪除測試PVC
- `kubectl delete -f deploy/test-claim.yaml`
在NFS服務器上的共享目錄下查看NFS的PV卷回收以后是否名字以archived開頭。
## 我的示例
* NFS服務器配置
```bash
# cat /etc/exports
```
```ini
/media/docker *(no_root_squash,rw,sync,no_subtree_check)
```
* nfs-deployment.yaml示例
NFS服務器的地址是ubuntu-master,共享出來的路徑是/media/docker,其他不需要修改。
```bash
# cat nfs-deployment.yaml
```
```yaml
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
name: nfs-client-provisioner
spec:
replicas: 1
strategy:
type: Recreate
template:
metadata:
labels:
app: nfs-client-provisioner
spec:
serviceAccountName: nfs-client-provisioner
containers:
- name: nfs-client-provisioner
image: quay.io/external_storage/nfs-client-provisioner:latest
volumeMounts:
- name: nfs-client-root
mountPath: /persistentvolumes
env:
- name: PROVISIONER_NAME
value: fuseim.pri/ifs
- name: NFS_SERVER
value: ubuntu-master
- name: NFS_PATH
value: /media/docker
volumes:
- name: nfs-client-root
nfs:
server: ubuntu-master
path: /media/docker
```
* StorageClass示例
可以修改Class的名字,我的改成了default。
```bash
# cat class.yaml
```
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: default
provisioner: fuseim.pri/ifs
```
* 查看StorageClass
```bash
# kubectl get sc
NAME PROVISIONER AGE
default fuseim.pri/ifs 2d
```
* 設置這個default名字的SC為Kubernetes的默認存儲后端
```bash
# kubectl patch storageclass default -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
storageclass.storage.k8s.io "default" patched
# kubectl get sc
NAME PROVISIONER AGE
default (default) fuseim.pri/ifs 2d
```
* 測試創建PVC
查看pvc文件
```bash
# cat test-claim.yaml
```
```yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: test-claim
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Mi
```
創建PVC
```bash
# kubectl apply -f test-claim.yaml
persistentvolumeclaim "test-claim" created
root@Ubuntu-master:~/kubernetes/nfs# kubectl get pvc|grep test
test-claim Bound pvc-fe3cb938-3f15-11e8-b61d-08002795cb26 1Mi RWX default 10s
# kubectl get pv|grep test
pvc-fe3cb938-3f15-11e8-b61d-08002795cb26 1Mi RWX Delete Bound default/test-claim default 58s
```
* 啟動測試POD
POD文件如下,作用就是在test-claim的PV里touch一個SUCCESS文件。
```bash
# cat test-pod.yaml
```
```yaml
kind: Pod
apiVersion: v1
metadata:
name: test-pod
spec:
containers:
- name: test-pod
image: gcr.io/google_containers/busybox:1.24
command:
- "/bin/sh"
args:
- "-c"
- "touch /mnt/SUCCESS && exit 0 || exit 1"
volumeMounts:
- name: nfs-pvc
mountPath: "/mnt"
restartPolicy: "Never"
volumes:
- name: nfs-pvc
persistentVolumeClaim:
claimName: test-claim
```
啟動POD,一會兒POD就是completed狀態,說明執行完畢。
```bash
# kubectl apply -f test-pod.yaml
pod "test-pod" created
kubectl get pod|grep test
test-pod 0/1 Completed 0 40s
```
我們去NFS共享目錄查看有沒有SUCCESS文件。
```bash
# cd default-test-claim-pvc-fe3cb938-3f15-11e8-b61d-08002795cb26
# ls
SUCCESS
```
說明部署正常,并且可以動態分配NFS的共享卷。
- 序言
- 云原生
- 云原生(Cloud Native)的定義
- CNCF - 云原生計算基金會簡介
- CNCF章程
- 云原生的設計哲學
- Play with Kubernetes
- 快速部署一個云原生本地實驗環境
- Kubernetes與云原生應用概覽
- 云原生應用之路——從Kubernetes到Cloud Native
- 云原生編程語言
- 云原生編程語言Ballerina
- 云原生編程語言Pulumi
- 云原生的未來
- Kubernetes架構
- 設計理念
- Etcd解析
- 開放接口
- CRI - Container Runtime Interface(容器運行時接口)
- CNI - Container Network Interface(容器網絡接口)
- CSI - Container Storage Interface(容器存儲接口)
- Kubernetes中的網絡
- Kubernetes中的網絡解析——以flannel為例
- Kubernetes中的網絡解析——以calico為例
- 具備API感知的網絡和安全性管理開源軟件Cilium
- Cilium架構設計與概念解析
- 資源對象與基本概念解析
- Pod狀態與生命周期管理
- Pod概覽
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中斷與PDB(Pod中斷預算)
- 集群資源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污點和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定義指標HPA
- 準入控制器(Admission Controller)
- 服務發現
- Service
- Ingress
- Traefik Ingress Controller
- 身份與權限控制
- ServiceAccount
- RBAC——基于角色的訪問控制
- NetworkPolicy
- 存儲
- Secret
- ConfigMap
- ConfigMap的熱更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存儲
- 集群擴展
- 使用自定義資源擴展API
- 使用CRD擴展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 資源調度
- QoS(服務質量等級)
- 用戶指南
- 資源對象配置
- 配置Pod的liveness和readiness探針
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的資源配額
- 命令使用
- Docker用戶過度到kubectl命令行指南
- kubectl命令概覽
- kubectl命令技巧大全
- 使用etcdctl訪問kubernetes數據
- 集群安全性管理
- 管理集群中的TLS
- kubelet的認證授權
- TLS bootstrap
- 創建用戶認證授權的kubeconfig文件
- IP偽裝代理
- 使用kubeconfig或token進行用戶身份認證
- Kubernetes中的用戶與身份認證授權
- Kubernetes集群安全性配置最佳實踐
- 訪問Kubernetes集群
- 訪問集群
- 使用kubeconfig文件配置跨集群認證
- 通過端口轉發訪問集群中的應用程序
- 使用service訪問群集中的應用程序
- 從外部訪問Kubernetes中的Pod
- Cabin - Kubernetes手機客戶端
- Kubernetic - Kubernetes桌面客戶端
- Kubernator - 更底層的Kubernetes UI
- 在Kubernetes中開發部署應用
- 適用于kubernetes的應用開發部署流程
- 遷移傳統應用到Kubernetes中——以Hadoop YARN為例
- 最佳實踐概覽
- 在CentOS上部署Kubernetes集群
- 創建TLS證書和秘鑰
- 創建kubeconfig文件
- 創建高可用etcd集群
- 安裝kubectl命令行工具
- 部署master節點
- 安裝flannel網絡插件
- 部署node節點
- 安裝kubedns插件
- 安裝dashboard插件
- 安裝heapster插件
- 安裝EFK插件
- 生產級的Kubernetes簡化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速構建測試集群
- 服務發現與負載均衡
- 安裝Traefik ingress
- 分布式負載測試
- 網絡和集群性能測試
- 邊緣節點配置
- 安裝Nginx ingress
- 安裝配置DNS
- 安裝配置Kube-dns
- 安裝配置CoreDNS
- 運維管理
- Master節點高可用
- 服務滾動升級
- 應用日志收集
- 配置最佳實踐
- 集群及應用監控
- 數據持久化問題
- 管理容器的計算資源
- 集群聯邦
- 存儲管理
- GlusterFS
- 使用GlusterFS做持久化存儲
- 使用Heketi作為Kubernetes的持久存儲GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存儲
- GlusterD-2.0
- Ceph
- 用Helm托管安裝Ceph集群并提供后端存儲
- 使用Ceph做持久化存儲
- 使用rbd-provisioner提供rbd持久化存儲
- OpenEBS
- 使用OpenEBS做持久化存儲
- Rook
- NFS
- 利用NFS動態提供Kubernetes后端存儲卷
- 集群與應用監控
- Heapster
- 使用Heapster獲取集群和對象的metric數據
- Prometheus
- 使用Prometheus監控kubernetes集群
- Prometheus查詢語言PromQL使用說明
- 使用Vistio監控Istio服務網格中的流量
- 分布式跟蹤
- OpenTracing
- 服務編排管理
- 使用Helm管理Kubernetes應用
- 構建私有Chart倉庫
- 持續集成與發布
- 使用Jenkins進行持續集成與發布
- 使用Drone進行持續集成與發布
- 更新與升級
- 手動升級Kubernetes集群
- 升級dashboard
- 領域應用概覽
- 微服務架構
- 微服務中的服務發現
- 使用Java構建微服務并發布到Kubernetes平臺
- Spring Boot快速開始指南
- Service Mesh 服務網格
- 企業級服務網格架構
- Service Mesh基礎
- Service Mesh技術對比
- 采納和演進
- 定制和集成
- 總結
- Istio
- 安裝并試用Istio service mesh
- 配置請求的路由規則
- 安裝和拓展Istio service mesh
- 集成虛擬機
- Istio中sidecar的注入規范及示例
- 如何參與Istio社區及注意事項
- Istio教程
- Istio免費學習資源匯總
- 深入理解Istio Service Mesh中的Envoy Sidecar注入與流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由轉發
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概覽
- 安裝Conduit
- Envoy
- Envoy的架構與基本術語
- Envoy作為前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 構建 SOFAMesh
- 大數據
- Spark standalone on Kubernetes
- 運行支持Kubernetes原生調度的Spark程序
- Serverless架構
- 理解Serverless
- FaaS-函數即服務
- OpenFaaS快速入門指南
- 邊緣計算
- 人工智能