# 用Helm托管安裝Ceph集群并提供后端存儲
本文翻譯自Ceph[官方文檔](http://docs.ceph.com/docs/master/start/kube-helm/),括號內的內容為注釋。
## 安裝
[ceph-helm ](https://github.com/ceph/ceph-helm/)項目可讓你在Kubernetes 環境以托管方式部署Ceph . 本文檔假定Kubernetes 環境已經可用。
## 當前的限制
* Public網絡和Cluster網絡必須是同一個網絡
* 如果 storage class 用戶標識不是admin, 則必須在Ceph集群中手動創建用戶并在Kubernetes中創建其secret
* ceph-mgr只能運行1個replica
## 安裝并使用Helm
可以按照此說明[instructions](https://github.com/kubernetes/helm/blob/master/docs/install.md)安裝Helm。
Helm通過從本地讀取Kubernetes配置文件來查找Kubernetes集群; 確保文件已下載和且helm客戶端可以訪問。
Kubernetes群集必須配置并運行Tiller服務器,并且須將本地Helm客戶端網絡可達。查看[init](https://github.com/kubernetes/helm/blob/master/docs/helm/helm_init.md)的Helm文檔獲取幫助。要在本地運行Tiller并將Helm連接到它,請運行如下命令(此命令會在Kubernetes集群部署一個tiller實例):
```bash
$ helm init
```
ceph-helm項目默認使用本地的Helm repo來存儲charts。要啟動本地Helm repo服務器,請運行:
```bash
$ helm serve &
$ helm repo add local http://localhost:8879/charts
```
## 添加Ceph-Helm charts到本地repo
```bash
$ git clone https://github.com/ceph/ceph-helm
$ cd ceph-helm/ceph
$ make
```
## 配置Ceph集群
創建一個包含Ceph配置的ceph-overrides.yaml文件。這個文件可能存在于任何地方,本文檔默認此文件在用戶的home目錄中。
```bash
$ cat ~/ceph-overrides.yaml
```
```yaml
network:
public: 172.21.0.0/20
cluster: 172.21.0.0/20
osd_devices:
- name: dev-sdd
device: /dev/sdd
zap: "1"
- name: dev-sde
device: /dev/sde
zap: "1"
storageclass:
name: ceph-rbd
pool: rbd
user_id: k8s
```
**注意** 如果未設置日志(journal)設備,它將與device設備同位置。另ceph-helm/ceph/ceph/values.yaml文件包含所有可配置的選項。
## 創建Ceph 集群的namespace
默認情況下,ceph-helm組件在Kubernetes的ceph namespace中運行。如果要自定義,請自定義namespace的名稱,默認namespace請運行:
```bash
$ kubectl create namespace ceph
```
## 配置RBAC權限
Kubernetes> = v1.6使RBAC成為默認的admission controller。ceph-helm要為每個組件提供RBAC角色和權限:
```bash
$ kubectl create -f ~/ceph-helm/ceph/rbac.yaml
```
rbac.yaml文件假定Ceph集群將部署在ceph命名空間中。
## 給Kubelet節點打標簽
需要設置以下標簽才能部署Ceph集群:
```
ceph-mon=enabled
ceph-mgr=enabled
ceph-osd=enabled
ceph-osd-device-<name>=enabled
```
ceph-osd-device-標簽是基于我們的ceph-overrides.yaml中定義的osd_devices名稱值創建的。從我們下面的例子中,我們將得到以下兩個標簽:ceph-osd-device-dev-sdb和ceph-osd-device-dev-sdc。
每個 Ceph Monitor節點:
```bash
$ kubectl label node <nodename> ceph-mon=enabled ceph-mgr=enabled
```
每個 OSD node節點:
```bash
$ kubectl label node <nodename> ceph-osd=enabled ceph-osd-device-dev-sdb=enabled ceph-osd-device-dev-sdc=enabled
```
## Ceph 部署
運行helm install命令來部署Ceph:
```bash
$ helm install --name=ceph local/ceph --namespace=ceph -f ~/ceph-overrides.yaml
NAME: ceph
LAST DEPLOYED: Wed Oct 18 22:25:06 2017
NAMESPACE: ceph
STATUS: DEPLOYED
RESOURCES:
==> v1/Secret
NAME TYPE DATA AGE
ceph-keystone-user-rgw Opaque 7 1s
==> v1/ConfigMap
NAME DATA AGE
ceph-bin-clients 2 1s
ceph-bin 24 1s
ceph-etc 1 1s
ceph-templates 5 1s
==> v1/Service
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ceph-mon None <none> 6789/TCP 1s
ceph-rgw 10.101.219.239 <none> 8088/TCP 1s
==> v1beta1/DaemonSet
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE-SELECTOR AGE
ceph-mon 3 3 0 3 0 ceph-mon=enabled 1s
ceph-osd-dev-sde 3 3 0 3 0 ceph-osd-device-dev-sde=enabled,ceph-osd=enabled 1s
ceph-osd-dev-sdd 3 3 0 3 0 ceph-osd-device-dev-sdd=enabled,ceph-osd=enabled 1s
==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
ceph-mds 1 1 1 0 1s
ceph-mgr 1 1 1 0 1s
ceph-mon-check 1 1 1 0 1s
ceph-rbd-provisioner 2 2 2 0 1s
ceph-rgw 1 1 1 0 1s
==> v1/Job
NAME DESIRED SUCCESSFUL AGE
ceph-mgr-keyring-generator 1 0 1s
ceph-mds-keyring-generator 1 0 1s
ceph-osd-keyring-generator 1 0 1s
ceph-rgw-keyring-generator 1 0 1s
ceph-mon-keyring-generator 1 0 1s
ceph-namespace-client-key-generator 1 0 1s
ceph-storage-keys-generator 1 0 1s
==> v1/StorageClass
NAME TYPE
ceph-rbd ceph.com/rbd
```
helm install的輸出顯示了將要部署的不同類型的資源。
將使用ceph-rbd-provisioner Pod創建ceph.com/rbd類型的名為ceph-rbd的StorageClass。這允許創建PVC時自動提供RBD。第一次掛載時,RBD設備將被格式化(format)。所有RBD設備都將使用ext4文件系統。ceph.com/rbd不支持fsType選項。默認情況下,RBD將使用鏡像格式2和鏡像分層特性。可以在values文件中覆蓋以下storageclass的默認值:
```yaml
storageclass:
name: ceph-rbd
pool: rbd
user_id: k8s
user_secret_name: pvc-ceph-client-key
image_format: "2"
image_features: layering
```
使用下面的命令檢查所有Pod是否正常運行。這可能需要幾分鐘時間:
```bash
$ kubectl -n ceph get pods
NAME READY STATUS RESTARTS AGE
ceph-mds-3804776627-976z9 0/1 Pending 0 1m
ceph-mgr-3367933990-b368c 1/1 Running 0 1m
ceph-mon-check-1818208419-0vkb7 1/1 Running 0 1m
ceph-mon-cppdk 3/3 Running 0 1m
ceph-mon-t4stn 3/3 Running 0 1m
ceph-mon-vqzl0 3/3 Running 0 1m
ceph-osd-dev-sdd-6dphp 1/1 Running 0 1m
ceph-osd-dev-sdd-6w7ng 1/1 Running 0 1m
ceph-osd-dev-sdd-l80vv 1/1 Running 0 1m
ceph-osd-dev-sde-6dq6w 1/1 Running 0 1m
ceph-osd-dev-sde-kqt0r 1/1 Running 0 1m
ceph-osd-dev-sde-lp2pf 1/1 Running 0 1m
ceph-rbd-provisioner-2099367036-4prvt 1/1 Running 0 1m
ceph-rbd-provisioner-2099367036-h9kw7 1/1 Running 0 1m
ceph-rgw-3375847861-4wr74 0/1 Pending 0 1m
```
**注意** 因為我們沒有用ceph-rgw = enabled或ceph-mds = enabled 給節點打標簽(ceph對象存儲特性需要ceph-rgw,cephfs特性需要ceph-mds),因此MDS和RGW Pod都處于pending狀態,一旦其他Pod都在運行狀態,請用如下命令從某個MON節點檢查Ceph的集群狀態:
```bash
$ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- ceph -s
cluster:
id: e8f9da03-c2d2-4ad3-b807-2a13d0775504
health: HEALTH_OK
services:
mon: 3 daemons, quorum mira115,mira110,mira109
mgr: mira109(active)
osd: 6 osds: 6 up, 6 in
data:
pools: 0 pools, 0 pgs
objects: 0 objects, 0 bytes
usage: 644 MB used, 5555 GB / 5556 GB avail
pgs:
```
## 配置一個POD以便從Ceph申請使用一個持久卷
為?/ ceph-overwrite.yaml中定義的k8s用戶創建一個密鑰環,并將其轉換為base64:
```bash
$ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- bash
# ceph auth get-or-create-key client.k8s mon 'allow r' osd 'allow rwx pool=rbd' | base64
QVFCLzdPaFoxeUxCRVJBQUVEVGdHcE9YU3BYMVBSdURHUEU0T0E9PQo=
# exit
```
編輯ceph namespace中存在的用戶secret:
```bash
$ kubectl -n ceph edit secrets/pvc-ceph-client-key
```
將base64值復制到key位置的值并保存::
```yaml
apiVersion: v1
data:
key: QVFCLzdPaFoxeUxCRVJBQUVEVGdHcE9YU3BYMVBSdURHUEU0T0E9PQo=
kind: Secret
metadata:
creationTimestamp: 2017-10-19T17:34:04Z
name: pvc-ceph-client-key
namespace: ceph
resourceVersion: "8665522"
selfLink: /api/v1/namespaces/ceph/secrets/pvc-ceph-client-key
uid: b4085944-b4f3-11e7-add7-002590347682
type: kubernetes.io/rbd
```
我們創建一個在default namespace中使用RBD的Pod。將用戶secret從ceph namespace復制到default namespace:
```bash
$ kubectl -n ceph get secrets/pvc-ceph-client-key -o json | jq '.metadata.namespace = "default"' | kubectl create -f -
secret "pvc-ceph-client-key" created
$ kubectl get secrets
NAME TYPE DATA AGE
default-token-r43wl kubernetes.io/service-account-token 3 61d
pvc-ceph-client-key kubernetes.io/rbd 1 20s
```
創建并初始化RBD池:
```bash
$ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- ceph osd pool create rbd 256
pool 'rbd' created
$ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- rbd pool init rbd
```
**重要** 重要的 Kubernetes使用RBD內核模塊將RBD映射到主機。Luminous需要CRUSH_TUNABLES 5(Jewel)。這些可調參數的最小內核版本是4.5。如果您的內核不支持這些可調參數,請運行ceph osd crush tunables hammer。
**重要** 由于RBD映射到主機系統上。主機需要能夠解析由kube-dns服務管理的ceph-mon.ceph.svc.cluster.local名稱。要獲得kube-dns服務的IP地址,運行kubectl -n kube-system get svc/kube-dns。
創建一個PVC:
```bash
$ cat pvc-rbd.yaml
```
```yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: ceph-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi
storageClassName: ceph-rbd
```
```bash
$ kubectl create -f pvc-rbd.yaml
persistentvolumeclaim "ceph-pvc" created
$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
ceph-pvc Bound pvc-1c2ada50-b456-11e7-add7-002590347682 20Gi RWO ceph-rbd 3s
```
檢查集群上是否已創建RBD:
```bash
$ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- rbd ls
kubernetes-dynamic-pvc-1c2e9442-b456-11e7-9bd2-2a4159ce3915
$ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- rbd info kubernetes-dynamic-pvc-1c2e9442-b456-11e7-9bd2-2a4159ce3915
rbd image 'kubernetes-dynamic-pvc-1c2e9442-b456-11e7-9bd2-2a4159ce3915':
size 20480 MB in 5120 objects
order 22 (4096 kB objects)
block_name_prefix: rbd_data.10762ae8944a
format: 2
features: layering
flags:
create_timestamp: Wed Oct 18 22:45:59 2017
```
創建一個使用此PVC的Pod:
```bash
$ cat pod-with-rbd.yaml
```
```yaml
kind: Pod
apiVersion: v1
metadata:
name: mypod
spec:
containers:
- name: busybox
image: busybox
command:
- sleep
- "3600"
volumeMounts:
- mountPath: "/mnt/rbd"
name: vol1
volumes:
- name: vol1
persistentVolumeClaim:
claimName: ceph-pvc
```
```bash
$ kubectl create -f pod-with-rbd.yaml
pod "mypod" created
```
檢查Pod:
```bash
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mypod 1/1 Running 0 17s
$ kubectl exec mypod -- mount | grep rbd
/dev/rbd0 on /mnt/rbd type ext4 (rw,relatime,stripe=1024,data=ordered)
```
## 日志
可以通過kubectl logs [-f]命令訪問OSD和Monitor日志。Monitors有多個日志記錄流,每個流都可以從ceph-mon Pod中的容器訪問。
在ceph-mon Pod中有3個容器運行:ceph-mon,相當于物理機上的ceph-mon.hostname.log,cluster-audit-log-tailer相當于物理機上的ceph.audit.log,cluster-log-tailer相當于物理機上的ceph.log或ceph -w。每個容器都可以通過--container或-c選項訪問。例如,要訪問cluster-tail-log,可以運行:
```bash
$ kubectl -n ceph logs ceph-mon-cppdk -c cluster-log-tailer
```
- 序言
- 云原生
- 云原生(Cloud Native)的定義
- CNCF - 云原生計算基金會簡介
- CNCF章程
- 云原生的設計哲學
- Play with Kubernetes
- 快速部署一個云原生本地實驗環境
- Kubernetes與云原生應用概覽
- 云原生應用之路——從Kubernetes到Cloud Native
- 云原生編程語言
- 云原生編程語言Ballerina
- 云原生編程語言Pulumi
- 云原生的未來
- Kubernetes架構
- 設計理念
- Etcd解析
- 開放接口
- CRI - Container Runtime Interface(容器運行時接口)
- CNI - Container Network Interface(容器網絡接口)
- CSI - Container Storage Interface(容器存儲接口)
- Kubernetes中的網絡
- Kubernetes中的網絡解析——以flannel為例
- Kubernetes中的網絡解析——以calico為例
- 具備API感知的網絡和安全性管理開源軟件Cilium
- Cilium架構設計與概念解析
- 資源對象與基本概念解析
- Pod狀態與生命周期管理
- Pod概覽
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中斷與PDB(Pod中斷預算)
- 集群資源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污點和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定義指標HPA
- 準入控制器(Admission Controller)
- 服務發現
- Service
- Ingress
- Traefik Ingress Controller
- 身份與權限控制
- ServiceAccount
- RBAC——基于角色的訪問控制
- NetworkPolicy
- 存儲
- Secret
- ConfigMap
- ConfigMap的熱更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存儲
- 集群擴展
- 使用自定義資源擴展API
- 使用CRD擴展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 資源調度
- QoS(服務質量等級)
- 用戶指南
- 資源對象配置
- 配置Pod的liveness和readiness探針
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的資源配額
- 命令使用
- Docker用戶過度到kubectl命令行指南
- kubectl命令概覽
- kubectl命令技巧大全
- 使用etcdctl訪問kubernetes數據
- 集群安全性管理
- 管理集群中的TLS
- kubelet的認證授權
- TLS bootstrap
- 創建用戶認證授權的kubeconfig文件
- IP偽裝代理
- 使用kubeconfig或token進行用戶身份認證
- Kubernetes中的用戶與身份認證授權
- Kubernetes集群安全性配置最佳實踐
- 訪問Kubernetes集群
- 訪問集群
- 使用kubeconfig文件配置跨集群認證
- 通過端口轉發訪問集群中的應用程序
- 使用service訪問群集中的應用程序
- 從外部訪問Kubernetes中的Pod
- Cabin - Kubernetes手機客戶端
- Kubernetic - Kubernetes桌面客戶端
- Kubernator - 更底層的Kubernetes UI
- 在Kubernetes中開發部署應用
- 適用于kubernetes的應用開發部署流程
- 遷移傳統應用到Kubernetes中——以Hadoop YARN為例
- 最佳實踐概覽
- 在CentOS上部署Kubernetes集群
- 創建TLS證書和秘鑰
- 創建kubeconfig文件
- 創建高可用etcd集群
- 安裝kubectl命令行工具
- 部署master節點
- 安裝flannel網絡插件
- 部署node節點
- 安裝kubedns插件
- 安裝dashboard插件
- 安裝heapster插件
- 安裝EFK插件
- 生產級的Kubernetes簡化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速構建測試集群
- 服務發現與負載均衡
- 安裝Traefik ingress
- 分布式負載測試
- 網絡和集群性能測試
- 邊緣節點配置
- 安裝Nginx ingress
- 安裝配置DNS
- 安裝配置Kube-dns
- 安裝配置CoreDNS
- 運維管理
- Master節點高可用
- 服務滾動升級
- 應用日志收集
- 配置最佳實踐
- 集群及應用監控
- 數據持久化問題
- 管理容器的計算資源
- 集群聯邦
- 存儲管理
- GlusterFS
- 使用GlusterFS做持久化存儲
- 使用Heketi作為Kubernetes的持久存儲GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存儲
- GlusterD-2.0
- Ceph
- 用Helm托管安裝Ceph集群并提供后端存儲
- 使用Ceph做持久化存儲
- 使用rbd-provisioner提供rbd持久化存儲
- OpenEBS
- 使用OpenEBS做持久化存儲
- Rook
- NFS
- 利用NFS動態提供Kubernetes后端存儲卷
- 集群與應用監控
- Heapster
- 使用Heapster獲取集群和對象的metric數據
- Prometheus
- 使用Prometheus監控kubernetes集群
- Prometheus查詢語言PromQL使用說明
- 使用Vistio監控Istio服務網格中的流量
- 分布式跟蹤
- OpenTracing
- 服務編排管理
- 使用Helm管理Kubernetes應用
- 構建私有Chart倉庫
- 持續集成與發布
- 使用Jenkins進行持續集成與發布
- 使用Drone進行持續集成與發布
- 更新與升級
- 手動升級Kubernetes集群
- 升級dashboard
- 領域應用概覽
- 微服務架構
- 微服務中的服務發現
- 使用Java構建微服務并發布到Kubernetes平臺
- Spring Boot快速開始指南
- Service Mesh 服務網格
- 企業級服務網格架構
- Service Mesh基礎
- Service Mesh技術對比
- 采納和演進
- 定制和集成
- 總結
- Istio
- 安裝并試用Istio service mesh
- 配置請求的路由規則
- 安裝和拓展Istio service mesh
- 集成虛擬機
- Istio中sidecar的注入規范及示例
- 如何參與Istio社區及注意事項
- Istio教程
- Istio免費學習資源匯總
- 深入理解Istio Service Mesh中的Envoy Sidecar注入與流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由轉發
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概覽
- 安裝Conduit
- Envoy
- Envoy的架構與基本術語
- Envoy作為前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 構建 SOFAMesh
- 大數據
- Spark standalone on Kubernetes
- 運行支持Kubernetes原生調度的Spark程序
- Serverless架構
- 理解Serverless
- FaaS-函數即服務
- OpenFaaS快速入門指南
- 邊緣計算
- 人工智能