[TOC]
當一個函數在其函數體內調用自身,則稱之為遞歸。最經典的例子便是計算斐波那契數列,即每個數均為前兩個數之和。
數列如下所示:
~~~
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, …
~~~
下面的程序可用于生成該數列(示例 6.13?[fibonacci.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_6/fibonacci.go)):
~~~
package main
import "fmt"
func main() {
result := 0
for i := 0; i <= 10; i++ {
result = fibonacci(i)
fmt.Printf("fibonacci(%d) is: %d\n", i, result)
}
}
func fibonacci(n int) (res int) {
if n <= 1 {
res = 1
} else {
res = fibonacci(n-1) + fibonacci(n-2)
}
return
}
~~~
輸出:
~~~
fibonacci(0) is: 1
fibonacci(1) is: 1
fibonacci(2) is: 2
fibonacci(3) is: 3
fibonacci(4) is: 5
fibonacci(5) is: 8
fibonacci(6) is: 13
fibonacci(7) is: 21
fibonacci(8) is: 34
fibonacci(9) is: 55
fibonacci(10) is: 89
~~~
許多問題都可以使用優雅的遞歸來解決,比如說著名的快速排序算法。
在使用遞歸函數時經常會遇到的一個重要問題就是棧溢出:一般出現在大量的遞歸調用導致的程序棧內存分配耗盡。這個問題可以通過一個名為[懶惰求值](https://zh.wikipedia.org/wiki/%E6%83%B0%E6%80%A7%E6%B1%82%E5%80%BC)的技術解決,在 Go 語言中,我們可以使用管道(channel)和 goroutine(詳見第 14.8 節)來實現。練習 14.12 也會通過這個方案來優化斐波那契數列的生成問題。
Go 語言中也可以使用相互調用的遞歸函數:多個函數之間相互調用形成閉環。因為 Go 語言編譯器的特殊性,這些函數的聲明順序可以是任意的。下面這個簡單的例子展示了函數 odd 和 even 之間的相互調用(示例 6.14?[mut_recurs.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_6/mut_recurs.go)):
~~~
package main
import (
"fmt"
)
func main() {
fmt.Printf("%d is even: is %t\n", 16, even(16)) // 16 is even: is true
fmt.Printf("%d is odd: is %t\n", 17, odd(17))
// 17 is odd: is true
fmt.Printf("%d is odd: is %t\n", 18, odd(18))
// 18 is odd: is false
}
func even(nr int) bool {
if nr == 0 {
return true
}
return odd(RevSign(nr) - 1)
}
func odd(nr int) bool {
if nr == 0 {
return false
}
return even(RevSign(nr) - 1)
}
func RevSign(nr int) int {
if nr < 0 {
return -nr
}
return nr
}
~~~
### [](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/06.6.md#練習題)練習題
**練習 6.4**
重寫本節中生成斐波那契數列的程序并返回兩個命名返回值(詳見第 6.2 節),即數列中的位置和對應的值,例如 5 與 4,89 與 10。
**練習 6.5**
使用遞歸函數從 10 打印到 1。
**練習 6.6**
實現一個輸出前 30 個整數的階乘的程序。
n! 的階乘定義為:`n! = n * (n-1)!, 0! = 1`,因此它非常適合使用遞歸函數來實現。
然后,使用命名返回值來實現這個程序的第二個版本。
特別注意的是,使用 int 類型最多只能計算到 12 的階乘,因為一般情況下 int 類型的大小為 32 位,繼續計算會導致溢出錯誤。那么,如何才能解決這個問題呢?
最好的解決方案就是使用 big 包(詳見第 9.4 節)。
- 前言
- 第一部分:學習 Go 語言
- 第1章:Go 語言的起源,發展與普及
- 1.1 起源與發展
- 1.2 語言的主要特性與發展的環境和影響因素
- 第2章:安裝與運行環境
- 2.1 平臺與架構
- 2.2 Go 環境變量
- 2.3 在 Linux 上安裝 Go
- 2.4 在 Mac OS X 上安裝 Go
- 2.5 在 Windows 上安裝 Go
- 2.6 安裝目錄清單
- 2.7 Go 運行時(runtime)
- 2.8 Go 解釋器
- 第3章:編輯器、集成開發環境與其它工具
- 3.1 Go 開發環境的基本要求
- 3.2 編輯器和集成開發環境
- 3.3 調試器
- 3.4 構建并運行 Go 程序
- 3.5 格式化代碼
- 3.6 生成代碼文檔
- 3.7 其它工具
- 3.8 Go 性能說明
- 3.9 與其它語言進行交互
- 第二部分:語言的核心結構與技術
- 第4章:基本結構和基本數據類型
- 4.1 文件名、關鍵字與標識符
- 4.2 Go 程序的基本結構和要素
- 4.3 常量
- 4.4 變量
- 4.5 基本類型和運算符
- 4.6 字符串
- 4.7 strings 和 strconv 包
- 4.8 時間和日期
- 4.9 指針
- 第5章:控制結構
- 5.1 if-else 結構
- 5.2 測試多返回值函數的錯誤
- 5.3 switch 結構
- 5.4 for 結構
- 5.5 Break 與 continue
- 5.6 標簽與 goto
- 第6章:函數(function)
- 6.1 介紹
- 6.2 函數參數與返回值
- 6.3 傳遞變長參數
- 6.4 defer 和追蹤
- 6.5 內置函數
- 6.6 遞歸函數
- 6.7 將函數作為參數
- 6.8 閉包
- 6.9 應用閉包:將函數作為返回值
- 6.10 使用閉包調試
- 6.11 計算函數執行時間
- 6.12 通過內存緩存來提升性能
- 第7章:數組與切片
- 7.1 聲明和初始化
- 7.2 切片
- 7.3 For-range 結構
- 7.4 切片重組(reslice)
- 7.5 切片的復制與追加
- 7.6 字符串、數組和切片的應用
- 第8章:Map
- 8.1 聲明、初始化和 make
- 8.2 測試鍵值對是否存在及刪除元素
- 8.3 for-range 的配套用法
- 8.4 map 類型的切片
- 8.5 map 的排序
- 8.6 將 map 的鍵值對調
- 第9章:包(package)
- 9.1 標準庫概述
- 9.2 regexp 包
- 9.3 鎖和 sync 包
- 9.4 精密計算和 big 包
- 9.5 自定義包和可見性
- 9.6 為自定義包使用 godoc
- 9.7 使用 go install 安裝自定義包
- 9.8 自定義包的目錄結構、go install 和 go test
- 9.9 通過 Git 打包和安裝
- 9.10 Go 的外部包和項目
- 9.11 在 Go 程序中使用外部庫
- 第10章:結構(struct)與方法(method)
- 10.1 結構體定義
- 10.2 使用工廠方法創建結構體實例
- 10.3 使用自定義包中的結構體
- 10.4 帶標簽的結構體
- 10.5 匿名字段和內嵌結構體
- 10.6 方法
- 10.8 垃圾回收和 SetFinalizer
- 第11章:接口(interface)與反射(reflection)
- 11.1 接口是什么
- 11.2 接口嵌套接口
- 11.3 類型斷言:如何檢測和轉換接口變量的類型
- 11.4 類型判斷:type-switch
- 11.5 測試一個值是否實現了某個接口
- 11.6 使用方法集與接口
- 11.7 第一個例子:使用 Sorter 接口排序
- 11.8 第二個例子:讀和寫
- 11.9 空接口
- 11.10 反射包
- 第三部分:Go 高級編程
- 第12章 讀寫數據
- 12.1 讀取用戶的輸入
- 12.2 文件讀寫
- 12.3 文件拷貝
- 12.4 從命令行讀取參數
- 12.5 用buffer讀取文件
- 12.6 用切片讀寫文件
- 12.7 用 defer 關閉文件
- 12.8 使用接口的實際例子:fmt.Fprintf
- 12.9 Json 數據格式
- 12.10 XML 數據格式
- 12.11 用 Gob 傳輸數據
- 12.12 Go 中的密碼學
- 第13章 錯誤處理與測試
- 13.1 錯誤處理
- 13.2 運行時異常和 panic
- 13.3 從 panic 中恢復(Recover)
- 13.4 自定義包中的錯誤處理和 panicking
- 13.5 一種用閉包處理錯誤的模式
- 13.6 啟動外部命令和程序
- 13.7 Go 中的單元測試和基準測試
- 13.8 測試的具體例子
- 13.9 用(測試數據)表驅動測試
- 13.10 性能調試:分析并優化 Go 程序
- 第14章:協程(goroutine)與通道(channel)
- 14.1 并發、并行和協程
- 14.2 使用通道進行協程間通信
- 14.3 協程同步:關閉通道-對阻塞的通道進行測試
- 14.4 使用 select 切換協程
- 14.5 通道,超時和計時器(Ticker)
- 14.6 協程和恢復(recover)
- 第15章:網絡、模版與網頁應用
- 15.1 tcp服務器
- 15.2 一個簡單的web服務器
- 15.3 訪問并讀取頁面數據
- 15.4 寫一個簡單的網頁應用
- 第四部分:實際應用
- 第16章:常見的陷阱與錯誤
- 16.1 誤用短聲明導致變量覆蓋
- 16.2 誤用字符串
- 16.3 發生錯誤時使用defer關閉一個文件
- 16.5 不需要將一個指向切片的指針傳遞給函數
- 16.6 使用指針指向接口類型
- 16.7 使用值類型時誤用指針
- 16.8 誤用協程和通道
- 16.9 閉包和協程的使用
- 16.10 糟糕的錯誤處理
- 第17章:模式
- 17.1 關于逗號ok模式
- 第18章:出于性能考慮的實用代碼片段
- 18.1 字符串
- 18.2 數組和切片
- 18.3 映射
- 18.4 結構體
- 18.5 接口
- 18.6 函數
- 18.7 文件
- 18.8 協程(goroutine)與通道(channel)
- 18.9 網絡和網頁應用
- 18.10 其他
- 18.11 出于性能考慮的最佳實踐和建議
- 附錄