## 11.10.1 方法和類型的反射
在10.4節我們看到可以通過反射來分析一個結構體。本節我們進一步探討強大的反射功能。反射是用程序檢查其所擁有的結構,尤其是類型的一種能力;這是元編程的一種形式。反射可以在運行時檢查類型和變量,例如它的大小、方法和`動態`的調用這些方法。這對于沒有源代碼的包尤其有用。這是一個強大的工具,除非真得有必要,否則應當避免使用或小心使用。
變量的最基本信息就是類型和值:反射包的`Type`用來表示一個Go類型,反射包的`Value`為Go值提供了反射接口。
兩個簡單的函數,`reflect.TypeOf`和`reflect.ValueOf`,返回被檢查對象的類型和值。例如,x被定義為:`var x float64 = 3.4`,那么`reflect.TypeOf(x)`返回`float64`,`reflect.ValueOf(x)`返回`<float64 Value>`
實際上,反射是通過檢查一個接口的值,變量首先被轉換成空接口。這從下面兩個函數簽名能夠很明顯的看出來:
~~~
func TypeOf(i interface{}) Type
func ValueOf(i interface{}) Value
~~~
接口的值包含一個type和value.
反射可以從接口值反射到對象,也可以從對象反射回接口值。
reflect.Type 和 reflect.Value 都有許多方法用于檢查和操作它們。一個重要的例子是 Value 有一個 Type 方法返回 reflect.Value 的 Type。另一個是 Type 和 Value 都有 Kind 方法返回一個常量來表示類型:Uint、Float64、Slice 等等。同樣 Value 有叫做 Int 和 Float 的方法可以獲取存儲在內部的值(跟 int64 和 float64 一樣)
~~~
const (
Invalid Kind = iota
Bool
Int
Int8
Int16
Int32
Int64
Uint
Uint8
Uint16
Uint32
Uint64
Uintptr
Float32
Float64
Complex64
Complex128
Array
Chan
Func
Interface
Map
Ptr
Slice
String
Struct
UnsafePointer
)
~~~
對于變量x,如果`v:=reflect.ValueOf(x)`那么`v.Kind()`返回float64,所以下面的表達式是`true`?`v.Kind() == reflect.Float64`
Kind總是返回底層類型:
~~~
type MyInt int
var m MyInt = 5
v := reflect.ValueOf(m)
~~~
`v.Kind()`返回`reflect.Int`
`Interface()`方法還原(接口)值的值,所以要打印v的值:`fmt.Println(v.Interface())`
嘗試運行下面的代碼:
示例 11.11 reflect1.go:
~~~
// blog: Laws of Reflection
package main
import (
"fmt"
"reflect"
)
func main() {
var x float64 = 3.4
fmt.Println("type:", reflect.TypeOf(x))
v := reflect.ValueOf(x)
fmt.Println("value:", v)
fmt.Println("type:", v.Type())
fmt.Println("kind:", v.Kind())
fmt.Println("value:", v.Float())
fmt.Println(v.Interface())
fmt.Printf("value is %5.2e\n", v.Interface())
y := v.Interface().(float64)
fmt.Println(y)
}
/* output:
type: float64
value: <float64 Value>
type: float64
kind: float64
value: 3.4
3.4
value is 3.40e+00
3.4
*/
~~~
知道x是一個float64類型的值,`reflect.ValueOf(x).float()`返回這個float64類型的實際值;同樣的適用于`Int(), Bool(), Complex() ,String()`
## [](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/11.10.md#11102-通過反射修改設置值)11.10.2 通過反射修改(設置)值
繼續前面的例子(參閱11.9 reflect2.go),假設我們把x的值改為3.1415。Value有一些方法可以完成這個任務,但是必須小心使用:`v.SetFloat(3.1415)`
這將產生一個錯誤:?`will panic: reflect.Value.SetFloat using unaddressable value`
為什么會這樣呢?問題的原因是v不是可設置的(這里并不是說值不可尋址)。是否可設置是Value的一個屬性,并且不是所有的反設值都有這個屬性:可以使用`CanSet()`方法測試是否可設置。
在例子中我們看到`v.CanSet()`返回false:?`settability of v: false`
當`v := reflect.ValueOf(x)`函數通過傳遞一個x拷貝創建了v,那么v的改變并不能更改原始的x。要想v的更改能作用到x,那就必須傳遞x的地址`v = reflect.ValueOf(&x)`。
通過Type()我們看到v現在的類型是*float64并且仍然是不可設置的。
要想讓其可設置我們需要使用`Elem()`函數,這間接的使用指針:`v = v.Elem()`
現在`v.CanSet()`返回true并且`v.SetFloat(3.1415)`設置成功了!
示例 11.12 reflect2.go:
~~~
// reflect2.go
package main
import (
"fmt"
"reflect"
)
func main() {
var x float64 = 3.4
v := reflect.ValueOf(x)
// setting a value:
// v.SetFloat(3.1415) // Error: will panic: reflect.Value.SetFloat using unaddressable value
fmt.Println("settability of v:", v.CanSet())
v = reflect.ValueOf(&x) // Note: take the address of x.
fmt.Println("type of v:", v.Type())
fmt.Println("settability of v:", v.CanSet())
v = v.Elem()
fmt.Println("The Elem of v is: ", v)
fmt.Println("settability of v:", v.CanSet())
v.SetFloat(3.1415) // this works!
fmt.Println(v.Interface())
fmt.Println(v)
}
/* Output:
settability of v: false
type of v: *float64
settability of v: false
The Elem of v is: <float64 Value>
settability of v: true
3.1415
<float64 Value>
*/
~~~
反射中有些內容是需要用地址去改變它的狀態的。
## [](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/11.10.md#11103-反射結構)11.10.3 反射結構
有些時候需要反射一個結構類型。NumField()方法返回結構內的字段數量;可以通過一個for循環通過索引取得每個字段的值`Field(i)`。
我們同樣能夠調用簽名在結構上的方法,例如,使用索引n來調用:`Method(n).Call(nil)`
示例 11.13 reflect_struct.go:
~~~
// reflect.go
package main
import (
"fmt"
"reflect"
)
type NotknownType struct {
s1, s2, s3 string
}
func (n NotknownType) String() string {
return n.s1 + " - " + n.s2 + " - " + n.s3
}
// variable to investigate:
var secret interface{} = NotknownType{"Ada", "Go", "Oberon"}
func main() {
value := reflect.ValueOf(secret) // <main.NotknownType Value>
typ := reflect.TypeOf(secret) // main.NotknownType
// alternative:
//typ := value.Type() // main.NotknownType
fmt.Println(typ)
knd := value.Kind() // struct
fmt.Println(knd)
// iterate through the fields of the struct:
for i := 0; i < value.NumField(); i++ {
fmt.Printf("Field %d: %v\n", i, value.Field(i))
// error: panic: reflect.Value.SetString using value obtained using unexported field
//value.Field(i).SetString("C#")
}
// call the first method, which is String():
results := value.Method(0).Call(nil)
fmt.Println(results) // [Ada - Go - Oberon]
}
/* Output:
main.NotknownType
struct
Field 0: Ada
Field 1: Go
Field 2: Oberon
[Ada - Go - Oberon]
*/
~~~
但是如果嘗試更改一個值,會得到一個錯:
~~~
panic: reflect.Value.SetString using value obtained using unexported field
~~~
這是因為結構中只有被導出字段(首字母大寫)才是可設置的;來看下面的例子:
示例 11.14 reflect_struct2.go:
~~~
// reflect_struct2.go
package main
import (
"fmt"
"reflect"
)
type T struct {
A int
B string
}
func main() {
t := T{23, "skidoo"}
s := reflect.ValueOf(&t).Elem()
typeOfT := s.Type()
for i := 0; i < s.NumField(); i++ {
f := s.Field(i)
fmt.Printf("%d: %s %s = %v\n", i,
typeOfT.Field(i).Name, f.Type(), f.Interface())
}
s.Field(0).SetInt(77)
s.Field(1).SetString("Sunset Strip")
fmt.Println("t is now", t)
}
/* Output:
0: A int = 23
1: B string = skidoo
t is now {77 Sunset Strip}
*/
~~~
附錄37深入闡述了反射概念。
- 前言
- 第一部分:學習 Go 語言
- 第1章:Go 語言的起源,發展與普及
- 1.1 起源與發展
- 1.2 語言的主要特性與發展的環境和影響因素
- 第2章:安裝與運行環境
- 2.1 平臺與架構
- 2.2 Go 環境變量
- 2.3 在 Linux 上安裝 Go
- 2.4 在 Mac OS X 上安裝 Go
- 2.5 在 Windows 上安裝 Go
- 2.6 安裝目錄清單
- 2.7 Go 運行時(runtime)
- 2.8 Go 解釋器
- 第3章:編輯器、集成開發環境與其它工具
- 3.1 Go 開發環境的基本要求
- 3.2 編輯器和集成開發環境
- 3.3 調試器
- 3.4 構建并運行 Go 程序
- 3.5 格式化代碼
- 3.6 生成代碼文檔
- 3.7 其它工具
- 3.8 Go 性能說明
- 3.9 與其它語言進行交互
- 第二部分:語言的核心結構與技術
- 第4章:基本結構和基本數據類型
- 4.1 文件名、關鍵字與標識符
- 4.2 Go 程序的基本結構和要素
- 4.3 常量
- 4.4 變量
- 4.5 基本類型和運算符
- 4.6 字符串
- 4.7 strings 和 strconv 包
- 4.8 時間和日期
- 4.9 指針
- 第5章:控制結構
- 5.1 if-else 結構
- 5.2 測試多返回值函數的錯誤
- 5.3 switch 結構
- 5.4 for 結構
- 5.5 Break 與 continue
- 5.6 標簽與 goto
- 第6章:函數(function)
- 6.1 介紹
- 6.2 函數參數與返回值
- 6.3 傳遞變長參數
- 6.4 defer 和追蹤
- 6.5 內置函數
- 6.6 遞歸函數
- 6.7 將函數作為參數
- 6.8 閉包
- 6.9 應用閉包:將函數作為返回值
- 6.10 使用閉包調試
- 6.11 計算函數執行時間
- 6.12 通過內存緩存來提升性能
- 第7章:數組與切片
- 7.1 聲明和初始化
- 7.2 切片
- 7.3 For-range 結構
- 7.4 切片重組(reslice)
- 7.5 切片的復制與追加
- 7.6 字符串、數組和切片的應用
- 第8章:Map
- 8.1 聲明、初始化和 make
- 8.2 測試鍵值對是否存在及刪除元素
- 8.3 for-range 的配套用法
- 8.4 map 類型的切片
- 8.5 map 的排序
- 8.6 將 map 的鍵值對調
- 第9章:包(package)
- 9.1 標準庫概述
- 9.2 regexp 包
- 9.3 鎖和 sync 包
- 9.4 精密計算和 big 包
- 9.5 自定義包和可見性
- 9.6 為自定義包使用 godoc
- 9.7 使用 go install 安裝自定義包
- 9.8 自定義包的目錄結構、go install 和 go test
- 9.9 通過 Git 打包和安裝
- 9.10 Go 的外部包和項目
- 9.11 在 Go 程序中使用外部庫
- 第10章:結構(struct)與方法(method)
- 10.1 結構體定義
- 10.2 使用工廠方法創建結構體實例
- 10.3 使用自定義包中的結構體
- 10.4 帶標簽的結構體
- 10.5 匿名字段和內嵌結構體
- 10.6 方法
- 10.8 垃圾回收和 SetFinalizer
- 第11章:接口(interface)與反射(reflection)
- 11.1 接口是什么
- 11.2 接口嵌套接口
- 11.3 類型斷言:如何檢測和轉換接口變量的類型
- 11.4 類型判斷:type-switch
- 11.5 測試一個值是否實現了某個接口
- 11.6 使用方法集與接口
- 11.7 第一個例子:使用 Sorter 接口排序
- 11.8 第二個例子:讀和寫
- 11.9 空接口
- 11.10 反射包
- 第三部分:Go 高級編程
- 第12章 讀寫數據
- 12.1 讀取用戶的輸入
- 12.2 文件讀寫
- 12.3 文件拷貝
- 12.4 從命令行讀取參數
- 12.5 用buffer讀取文件
- 12.6 用切片讀寫文件
- 12.7 用 defer 關閉文件
- 12.8 使用接口的實際例子:fmt.Fprintf
- 12.9 Json 數據格式
- 12.10 XML 數據格式
- 12.11 用 Gob 傳輸數據
- 12.12 Go 中的密碼學
- 第13章 錯誤處理與測試
- 13.1 錯誤處理
- 13.2 運行時異常和 panic
- 13.3 從 panic 中恢復(Recover)
- 13.4 自定義包中的錯誤處理和 panicking
- 13.5 一種用閉包處理錯誤的模式
- 13.6 啟動外部命令和程序
- 13.7 Go 中的單元測試和基準測試
- 13.8 測試的具體例子
- 13.9 用(測試數據)表驅動測試
- 13.10 性能調試:分析并優化 Go 程序
- 第14章:協程(goroutine)與通道(channel)
- 14.1 并發、并行和協程
- 14.2 使用通道進行協程間通信
- 14.3 協程同步:關閉通道-對阻塞的通道進行測試
- 14.4 使用 select 切換協程
- 14.5 通道,超時和計時器(Ticker)
- 14.6 協程和恢復(recover)
- 第15章:網絡、模版與網頁應用
- 15.1 tcp服務器
- 15.2 一個簡單的web服務器
- 15.3 訪問并讀取頁面數據
- 15.4 寫一個簡單的網頁應用
- 第四部分:實際應用
- 第16章:常見的陷阱與錯誤
- 16.1 誤用短聲明導致變量覆蓋
- 16.2 誤用字符串
- 16.3 發生錯誤時使用defer關閉一個文件
- 16.5 不需要將一個指向切片的指針傳遞給函數
- 16.6 使用指針指向接口類型
- 16.7 使用值類型時誤用指針
- 16.8 誤用協程和通道
- 16.9 閉包和協程的使用
- 16.10 糟糕的錯誤處理
- 第17章:模式
- 17.1 關于逗號ok模式
- 第18章:出于性能考慮的實用代碼片段
- 18.1 字符串
- 18.2 數組和切片
- 18.3 映射
- 18.4 結構體
- 18.5 接口
- 18.6 函數
- 18.7 文件
- 18.8 協程(goroutine)與通道(channel)
- 18.9 網絡和網頁應用
- 18.10 其他
- 18.11 出于性能考慮的最佳實踐和建議
- 附錄