# 6.3 組合與繼承的結合
許多時候都要求將組合與繼承兩種技術結合起來使用。下面這個例子展示了如何同時采用繼承與組合技術,從而創建一個更復雜的類,同時進行必要的構造器初始化工作:
```
//: PlaceSetting.java
// Combining composition & inheritance
class Plate {
Plate(int i) {
System.out.println("Plate constructor");
}
}
class DinnerPlate extends Plate {
DinnerPlate(int i) {
super(i);
System.out.println(
"DinnerPlate constructor");
}
}
class Utensil {
Utensil(int i) {
System.out.println("Utensil constructor");
}
}
class Spoon extends Utensil {
Spoon(int i) {
super(i);
System.out.println("Spoon constructor");
}
}
class Fork extends Utensil {
Fork(int i) {
super(i);
System.out.println("Fork constructor");
}
}
class Knife extends Utensil {
Knife(int i) {
super(i);
System.out.println("Knife constructor");
}
}
// A cultural way of doing something:
class Custom {
Custom(int i) {
System.out.println("Custom constructor");
}
}
public class PlaceSetting extends Custom {
Spoon sp;
Fork frk;
Knife kn;
DinnerPlate pl;
PlaceSetting(int i) {
super(i + 1);
sp = new Spoon(i + 2);
frk = new Fork(i + 3);
kn = new Knife(i + 4);
pl = new DinnerPlate(i + 5);
System.out.println(
"PlaceSetting constructor");
}
public static void main(String[] args) {
PlaceSetting x = new PlaceSetting(9);
}
} ///:~
```
盡管編譯器會強迫我們對基類進行初始化,并要求我們在構造器最開頭做這一工作,但它并不會監視我們是否正確初始化了成員對象。所以對此必須特別加以留意。
## 6.3.1 確保正確的清除
Java不具備象C++的“析構器”那樣的概念。在C++中,一旦析構(清除)一個對象,就會自動調用析構器方法。之所以將其省略,大概是由于在Java中只需簡單地忘記對象,不需強行析構它們。垃圾收集器會在必要的時候自動回收內存。
垃圾收集器大多數時候都能很好地工作,但在某些情況下,我們的類可能在自己的存在時期采取一些行動,而這些行動要求必須進行明確的清除工作。正如第4章已經指出的那樣,我們并不知道垃圾收集器什么時候才會顯身,或者說不知它何時會調用。所以一旦希望為一個類清除什么東西,必須寫一個特別的方法,明確、專門地來做這件事情。同時,還要讓客戶程序員知道他們必須調用這個方法。而在所有這一切的后面,就如第9章(異常控制)要詳細解釋的那樣,必須將這樣的清除代碼置于一個`finally`從句中,從而防范任何可能出現的異常事件。
下面介紹的是一個計算機輔助設計系統的例子,它能在屏幕上描繪圖形:
```
//: CADSystem.java
// Ensuring proper cleanup
import java.util.*;
class Shape {
Shape(int i) {
System.out.println("Shape constructor");
}
void cleanup() {
System.out.println("Shape cleanup");
}
}
class Circle extends Shape {
Circle(int i) {
super(i);
System.out.println("Drawing a Circle");
}
void cleanup() {
System.out.println("Erasing a Circle");
super.cleanup();
}
}
class Triangle extends Shape {
Triangle(int i) {
super(i);
System.out.println("Drawing a Triangle");
}
void cleanup() {
System.out.println("Erasing a Triangle");
super.cleanup();
}
}
class Line extends Shape {
private int start, end;
Line(int start, int end) {
super(start);
this.start = start;
this.end = end;
System.out.println("Drawing a Line: " +
start + ", " + end);
}
void cleanup() {
System.out.println("Erasing a Line: " +
start + ", " + end);
super.cleanup();
}
}
public class CADSystem extends Shape {
private Circle c;
private Triangle t;
private Line[] lines = new Line[10];
CADSystem(int i) {
super(i + 1);
for(int j = 0; j < 10; j++)
lines[j] = new Line(j, j*j);
c = new Circle(1);
t = new Triangle(1);
System.out.println("Combined constructor");
}
void cleanup() {
System.out.println("CADSystem.cleanup()");
t.cleanup();
c.cleanup();
for(int i = 0; i < lines.length; i++)
lines[i].cleanup();
super.cleanup();
}
public static void main(String[] args) {
CADSystem x = new CADSystem(47);
try {
// Code and exception handling...
} finally {
x.cleanup();
}
}
} ///:~
```
這個系統中的所有東西都屬于某種`Shape`(幾何形狀)。`Shape`本身是一種`Object`(對象),因為它是從根類明確繼承的。每個類都重新定義了`Shape`的`cleanup()`方法,同時還要用`super`調用那個方法的基類版本。盡管對象存在期間調用的所有方法都可負責做一些要求清除的工作,但對于特定的`Shape`類——`Circle`(圓)、`Triangle`(三角形)以及`Line`(直線),它們都擁有自己的構造器,能完成“作圖”(`draw`)任務。每個類都有它們自己的`cleanup()`方法,用于將非內存的東西恢復回對象存在之前的景象。
在`main()`中,可看到兩個新關鍵字:`try`和`finally`。我們要到第9章才會向大家正式引薦它們。其中,`try`關鍵字指出后面跟隨的塊(由花括號定界)是一個“警戒區”。也就是說,它會受到特別的待遇。其中一種待遇就是:該警戒區后面跟隨的`finally`從句的代碼肯定會得以執行——不管`try`塊到底存不存在(通過異常控制技術,`try`塊可有多種不尋常的應用)。在這里,`finally`從句的意思是“總是為`x`調用`cleanup()`,無論會發生什么事情”。這些關鍵字將在第9章進行全面、完整的解釋。
在自己的清除方法中,必須注意對基類以及成員對象清除方法的調用順序——假若一個子對象要以另一個為基礎。通常,應采取與C++編譯器對它的“析構器”采取的同樣的形式:首先完成與類有關的所有特殊工作(可能要求基類元素仍然可見),然后調用基類清除方法,就象這兒演示的那樣。
許多情況下,清除可能并不是個問題;只需讓垃圾收集器盡它的職責即可。但一旦必須由自己明確清除,就必須特別謹慎,并要求周全的考慮。
(1) 垃圾收集的順序
不能指望自己能確切知道何時會開始垃圾收集。垃圾收集器可能永遠不會得到調用。即使得到調用,它也可能以自己愿意的任何順序回收對象。除此以外,Java 1.0實現的垃圾收集器機制通常不會調用`finalize()`方法。除內存的回收以外,其他任何東西都最好不要依賴垃圾收集器進行回收。若想明確地清除什么,請制作自己的清除方法,而且不要依賴`finalize()`。然而正如以前指出的那樣,可強迫Java1.1調用所有收尾模塊(`Finalizer`)。
## 6.3.2 名字的隱藏
只有C++程序員可能才會驚訝于名字的隱藏,因為它的工作原理與在C++里是完全不同的。如果Java基類有一個方法名被“重載”使用多次,在派生類里對那個方法名的重新定義就不會隱藏任何基類的版本。所以無論方法在這一級還是在一個基類中定義,重載都會生效:
```
//: Hide.java
// Overloading a base-class method name
// in a derived class does not hide the
// base-class versions
class Homer {
char doh(char c) {
System.out.println("doh(char)");
return 'd';
}
float doh(float f) {
System.out.println("doh(float)");
return 1.0f;
}
}
class Milhouse {}
class Bart extends Homer {
void doh(Milhouse m) {}
}
class Hide {
public static void main(String[] args) {
Bart b = new Bart();
b.doh(1); // doh(float) used
b.doh('x');
b.doh(1.0f);
b.doh(new Milhouse());
}
} ///:~
```
正如下一章會講到的那樣,很少會用與基類里完全一致的簽名和返回類型來覆蓋同名的方法,否則會使人感到迷惑(這正是C++不允許那樣做的原因,所以能夠防止產生一些不必要的錯誤)。
- Java 編程思想
- 寫在前面的話
- 引言
- 第1章 對象入門
- 1.1 抽象的進步
- 1.2 對象的接口
- 1.3 實現方案的隱藏
- 1.4 方案的重復使用
- 1.5 繼承:重新使用接口
- 1.6 多態對象的互換使用
- 1.7 對象的創建和存在時間
- 1.8 異常控制:解決錯誤
- 1.9 多線程
- 1.10 永久性
- 1.11 Java和因特網
- 1.12 分析和設計
- 1.13 Java還是C++
- 第2章 一切都是對象
- 2.1 用引用操縱對象
- 2.2 所有對象都必須創建
- 2.3 絕對不要清除對象
- 2.4 新建數據類型:類
- 2.5 方法、參數和返回值
- 2.6 構建Java程序
- 2.7 我們的第一個Java程序
- 2.8 注釋和嵌入文檔
- 2.9 編碼樣式
- 2.10 總結
- 2.11 練習
- 第3章 控制程序流程
- 3.1 使用Java運算符
- 3.2 執行控制
- 3.3 總結
- 3.4 練習
- 第4章 初始化和清除
- 4.1 用構造器自動初始化
- 4.2 方法重載
- 4.3 清除:收尾和垃圾收集
- 4.4 成員初始化
- 4.5 數組初始化
- 4.6 總結
- 4.7 練習
- 第5章 隱藏實現過程
- 5.1 包:庫單元
- 5.2 Java訪問指示符
- 5.3 接口與實現
- 5.4 類訪問
- 5.5 總結
- 5.6 練習
- 第6章 類復用
- 6.1 組合的語法
- 6.2 繼承的語法
- 6.3 組合與繼承的結合
- 6.4 到底選擇組合還是繼承
- 6.5 protected
- 6.6 累積開發
- 6.7 向上轉換
- 6.8 final關鍵字
- 6.9 初始化和類裝載
- 6.10 總結
- 6.11 練習
- 第7章 多態性
- 7.1 向上轉換
- 7.2 深入理解
- 7.3 覆蓋與重載
- 7.4 抽象類和方法
- 7.5 接口
- 7.6 內部類
- 7.7 構造器和多態性
- 7.8 通過繼承進行設計
- 7.9 總結
- 7.10 練習
- 第8章 對象的容納
- 8.1 數組
- 8.2 集合
- 8.3 枚舉器(迭代器)
- 8.4 集合的類型
- 8.5 排序
- 8.6 通用集合庫
- 8.7 新集合
- 8.8 總結
- 8.9 練習
- 第9章 異常差錯控制
- 9.1 基本異常
- 9.2 異常的捕獲
- 9.3 標準Java異常
- 9.4 創建自己的異常
- 9.5 異常的限制
- 9.6 用finally清除
- 9.7 構造器
- 9.8 異常匹配
- 9.9 總結
- 9.10 練習
- 第10章 Java IO系統
- 10.1 輸入和輸出
- 10.2 增添屬性和有用的接口
- 10.3 本身的缺陷:RandomAccessFile
- 10.4 File類
- 10.5 IO流的典型應用
- 10.6 StreamTokenizer
- 10.7 Java 1.1的IO流
- 10.8 壓縮
- 10.9 對象序列化
- 10.10 總結
- 10.11 練習
- 第11章 運行期類型識別
- 11.1 對RTTI的需要
- 11.2 RTTI語法
- 11.3 反射:運行期類信息
- 11.4 總結
- 11.5 練習
- 第12章 傳遞和返回對象
- 12.1 傳遞引用
- 12.2 制作本地副本
- 12.3 克隆的控制
- 12.4 只讀類
- 12.5 總結
- 12.6 練習
- 第13章 創建窗口和程序片
- 13.1 為何要用AWT?
- 13.2 基本程序片
- 13.3 制作按鈕
- 13.4 捕獲事件
- 13.5 文本字段
- 13.6 文本區域
- 13.7 標簽
- 13.8 復選框
- 13.9 單選鈕
- 13.10 下拉列表
- 13.11 列表框
- 13.12 布局的控制
- 13.13 action的替代品
- 13.14 程序片的局限
- 13.15 視窗化應用
- 13.16 新型AWT
- 13.17 Java 1.1用戶接口API
- 13.18 可視編程和Beans
- 13.19 Swing入門
- 13.20 總結
- 13.21 練習
- 第14章 多線程
- 14.1 反應靈敏的用戶界面
- 14.2 共享有限的資源
- 14.3 堵塞
- 14.4 優先級
- 14.5 回顧runnable
- 14.6 總結
- 14.7 練習
- 第15章 網絡編程
- 15.1 機器的標識
- 15.2 套接字
- 15.3 服務多個客戶
- 15.4 數據報
- 15.5 一個Web應用
- 15.6 Java與CGI的溝通
- 15.7 用JDBC連接數據庫
- 15.8 遠程方法
- 15.9 總結
- 15.10 練習
- 第16章 設計模式
- 16.1 模式的概念
- 16.2 觀察器模式
- 16.3 模擬垃圾回收站
- 16.4 改進設計
- 16.5 抽象的應用
- 16.6 多重分發
- 16.7 訪問器模式
- 16.8 RTTI真的有害嗎
- 16.9 總結
- 16.10 練習
- 第17章 項目
- 17.1 文字處理
- 17.2 方法查找工具
- 17.3 復雜性理論
- 17.4 總結
- 17.5 練習
- 附錄A 使用非JAVA代碼
- 附錄B 對比C++和Java
- 附錄C Java編程規則
- 附錄D 性能
- 附錄E 關于垃圾收集的一些話
- 附錄F 推薦讀物