# 參考
> 原文: [References](https://serialmentor.com/dataviz/references.html)
```
Bateman, S., R. Mandryk, C. Gutwin, A. Genest, D. McDine, and C. Brooks. 2010. “Useful Junk? The Effects of Visual Embellishment on Comprehension and Memorability of Charts.” ACM Conference on Human Factors in Computing Systems, 2573–82. doi:10.1145/1753326.1753716.
Becker, R. A., W. S. Cleveland, and M.-J. Shyu. 1996. “The Visual Design and Control of Trellis Display.” Journal of Computational and Graphical Statistics 5: 123–55.
Bergstrom, C. T., and J. West. 2016. “The Principle of Proportional Ink.” http://callingbullshit.org/tools/tools_proportional_ink.html.
Borgo, R., A. Abdul-Rahman, F. Mohamed, P. W. Grant, I. Reppa, and L. Floridi. 2012. “An Empirical Study on Using Visual Embellishments in Visualization.” IEEE Transactions on Visualization and Computer Graphics 18: 2759–68. doi:10.1109/TVCG.2012.197.
Brewer, Cynthia A. 2017. “ColorBrewer 2.0. Color Advice for Cartography.” http://www.ColorBrewer.org.
Carr, D. B., R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. 1987. “Scatterplot Matrix Techniques for Large N.” J. Am. Stat. Assoc. 82: 424–36.
Clauset, A., C. R. Shalizi, and M. E. J. Newman. 2009. “Power-Law Distributions in Empirical Data.” SIAM Review 51: 661–703.
Cleveland, R. B., W. S. Cleveland, J. E. McRae, and I. Terpenning. 1990. “STL: A Seasonal-Trend Decomposition Procedure Based on Loess.” Journal of Official Statistics 6: 3–73.
Cleveland, W. S. 1979. “Robust Locally Weighted Regression and Smoothing Scatterplots.” Journal of the American Statistical Association 74: 829–36.
———. 1993. “Visualizing Data.” Summit, New Jersey: Hobart Press.
Dua, D., and E. Karra Taniskidou. 2017. “UCI Machine Learning Repository.” University of California, Irvine, School of Information; Computer Sciences. https://archive.ics.uci.edu/ml.
Haroz, S., R. Kosara, and S. Franconeri. 2016. “The Connected Scatterplot for Presenting Paired Time Series.” IEEE Transactions on Visualization and Computer Graphics 22: 2174–86. doi:10.1109/TVCG.2015.2502587.
Haroz, S., R. Kosara, and S. L. Franconeri. 2015. “ISOTYPE Visualization: Working Memory, Performance, and Engagement with Pictographs.” ACM Conference on Human Factors in Computing Systems, 1191–1200. doi:10.1145/2702123.2702275.
Hullman, J., P. Resnick, and E. Adar. 2015. “Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences About Reliability of Variable Ordering.” PLOS ONE 10: e0142444. doi:10.1371/journal.pone.0142444.
Kale, A., F. Nguyen, M. Kay, and J. Hullman. 2018. “Hypothetical Outcome Plots Help Untrained Observers Judge Trends in Ambiguous Data.” IEEE Transactions on Visualization and Computer Graphics. doi:10.1109/TVCG.2018.2864909.
Kay, M., T. Kola, J. Hullman, and S. Munson. 2016. “When (Ish) Is My Bus? User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems.” CHI Conference on Human Factors in Computing Systems, 5092–5103. doi:10.1145/2858036.2858558.
Marcos, M. L., and J. Echave. 2015. “Too Packed to Change: Side-Chain Packing and Site-Specific Substitution Rates in Protein Evolution.” PeerJ 3: e911.
McDonald, Ian. 2017. “DW-NOMINATE Using Ggjoy.” http://rpubs.com/ianrmcdonald/293304.
Molyneaux, L., S. K. Gilliam, and L. C. Florant. 1947. “Differences in Virginia Death Rates by Color, Sex, Age, and Rural or Urban Residence.” American Sociological Review 12: 525–35.
Okabe, M., and K. Ito. 2008. “Color Universal Design (CUD): How to Make Figures and Presentations That Are Friendly to Colorblind People.” http://jfly.iam.u-tokyo.ac.jp/color/.
Paff, M. L., B. R. Jack, B. L. Smith, J. J. Bull, and C. O. Wilke. 2018. “Combinatorial Approaches to Viral Attenuation.” bioRxiv, 29918. doi:10.1101/299180.
Schimel, J. 2011. Writing Science: How to Write Papers That Get Cited and Proposals That Get Funded. Oxford University Press.
Sidiropoulos, N., S. H. Sohi, T. L. Pedersen, B. T. Porse, O. Winther, N. Rapin, and F. O. Bagger. 2018. “SinaPlot: An Enhanced Chart for Simple and Truthful Representation of Single Observations over Multiple Classes.” J. Comp. Graph. Stat 27: 673–76. doi:10.1080/10618600.2017.1366914.
Stone, M., D. Albers Szafir, and V. Setlur. 2014. “An Engineering Model for Color Difference as a Function of Size.” In 22nd Color and Imaging Conference. Society for Imaging Science and Technology.
Telford, R. D., and R. B. Cunningham. 1991. “Sex, Sport, and Body-Size Dependency of Hematology in Highly Trained Athletes.” Medicine and Science in Sports and Exercise 23: 788–94.
The Economist online. 2011. “Corrosive Corruption.” https://www.economist.com/graphic-detail/2011/12/02/corrosive-corruption.
Tufte, E. R. 1990. Envisioning Information. Cheshire, Connecticut: Graphics Press.
———. 2001. The Visual Display of Quantitative Information. 2nd ed. Cheshire, Connecticut: Graphics Press.
Wehrwein, Austin. 2017. “It Brings Me Ggjoy.” http://austinwehrwein.com/data-visualization/it-brings-me-ggjoy/.
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York: Springer.
Wikipedia, User:Schutz. 2007. “File:Piecharts.svg.” https://en.wikipedia.org/wiki/File:Piecharts.svg.
Yates, F. 1935. “Complex Experiments.” Supplement to the Journal of the Royal Statistical Society 2: 181–247. doi:10.2307/2983638.
```
- 數據可視化的基礎知識
- 歡迎
- 前言
- 1 簡介
- 2 可視化數據:將數據映射到美學上
- 3 坐標系和軸
- 4 顏色刻度
- 5 可視化的目錄
- 6 可視化數量
- 7 可視化分布:直方圖和密度圖
- 8 可視化分布:經驗累積分布函數和 q-q 圖
- 9 一次可視化多個分布
- 10 可視化比例
- 11 可視化嵌套比例
- 12 可視化兩個或多個定量變量之間的關聯
- 13 可視化自變量的時間序列和其他函數
- 14 可視化趨勢
- 15 可視化地理空間數據
- 16 可視化不確定性
- 17 比例墨水原理
- 18 處理重疊點
- 19 顏色使用的常見缺陷
- 20 冗余編碼
- 21 多面板圖形
- 22 標題,說明和表格
- 23 平衡數據和上下文
- 24 使用較大的軸標簽
- 25 避免線條圖
- 26 不要走向 3D
- 27 了解最常用的圖像文件格式
- 28 選擇合適的可視化軟件
- 29 講述一個故事并提出一個觀點
- 30 帶注解的參考書目
- 技術注解
- 參考