1. 延長生命的魔咒
RefBase為我們提供了一個這樣的函數:
~~~
extendObjectLifetime(int32_t mode)
另外還定義了一個枚舉:
enum {
OBJECT_LIFETIME_WEAK = 0x0001,
OBJECT_LIFETIME_FOREVER = 0x0003
};
注意:FOREVER的值是3,二進制表示是B11,而WEAK的二進制是B01,也就是說FOREVER包括了WEAK的情況。
~~~
上面這兩個枚舉值,是破除強弱引用計數作用的魔咒。先觀察flags為OBJECT_LIFETIME_WEAK的情況,見下面的例子。
**例子3**
~~~
class A:public RefBase
{
publicA()
{
extendObjectLifetime(OBJECT_LIFETIME_WEAK);//在構造函數中調用
}
}
int main()
{
A *pA =new A();
wp<A> wpA(A);//弱引用計數加1
{
sp<A>spA(pA) //sp后,結果是強引用計數為1,弱引用計數為2
}
....
}
~~~
sp的析構將直接調用RefBase的decStrong,它的代碼如下所示:
**RefBase.cpp**
~~~
void RefBase::decStrong(const void* id) const
{
weakref_impl* const refs = mRefs;
refs->removeStrongRef(id);
constint32_t c = android_atomic_dec(&refs->mStrong);
if (c== 1) { //上面原子操作后,強引用計數為0
const_cast<RefBase*>(this)->onLastStrongRef(id);、
//注意這句話。如果flags不是WEAK或FOREVER的話,將delete數據對象
//現在我們的flags是WEAK,所以不會delete 它
if((refs->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK) {
delete this;
}
}
refs->removeWeakRef(id);
refs->decWeak(id);//調用前弱引用計數是2。
}
~~~
然后調用影子對象的decWeak。再來看它的處理,代碼如下所示:
**RefBase.cpp::weakref_type的decWeak()函數**
~~~
void RefBase::weakref_type::decWeak(const void*id)
{
weakref_impl* const impl = static_cast<weakref_impl*>(this);
impl->removeWeakRef(id);
constint32_t c = android_atomic_dec(&impl->mWeak);
if (c!= 1) return; //c為2,弱引用計數為1,直接返回。
/*
假設我們現在到了例子中的wp析構之處,這時也會調用decWeak,調用上邊的原子減操作后
c=1,弱引用計數變為0,此時會繼續往下運行。由于mFlags為WEAK ,所以不滿足if的條件
*/
if((impl->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK) {
if(impl->mStrong == INITIAL_STRONG_VALUE)
delete impl->mBase;
else {
delete impl;
}
} else{//flag為WEAK,滿足else分支的條件
impl->mBase->onLastWeakRef(id);
/*
由于flags值滿足下面這個條件,所以實際對象會被delete,根據前面的分析, 實際對象的delete會檢查影子對象的弱引用計數,如果它為0,則會把影子對象也delete掉。
由于影子對象的弱引用計數此時已經為0,所以影子對象也會被delete。
*/
if((impl->mFlags&OBJECT_LIFETIME_FOREVER) != OBJECT_LIFETIME_FOREVER) {
delete impl->mBase;
}
}
}
~~~
2. LIFETIME_WEAK的魔力
看完上面的例子,我們發現什么了?
- 在LIFETIME_WEAK的魔法下,強引用計數為0,而弱引用計數不為0的時候,實際對象沒有被delete!只有當強引用計數和弱引用計數同時為0時,實際對象和影子對象才會被delete。
3. 魔咒大揭秘
至于LIFETIME_FOREVER的破解,就不用再來一斧子了,我直接的答案是:
- flags為0,強引用計數控制實際對象的生命周期,弱引用計數控制影子對象的生命周期。強引用計數為0后,實際對象被delete。所以對于這種情況,應記住的是,使用wp時要由弱生強,以免收到segment fault信號。
- flags為LIFETIME_WEAK,強引用計數為0,弱引用計數不為0時,實際對象不會被delete。當弱引用計數減為0時,實際對象和影子對象會同時被delete。這是功德圓滿的情況。
- flags為LIFETIME_FOREVER,對象將長生不老,徹底擺脫強弱引用計數的控制。所以你要在適當的時候殺死這些老妖精,免得她禍害“人間”。
- 前言
- 第1章 閱讀前的準備工作
- 1.1 系統架構
- 1.1.1 Android系統架構
- 1.1.2 本書的架構
- 1.2 搭建開發環境
- 1.2.1 下載源碼
- 1.2.2 編譯源碼
- 1.3 工具介紹
- 1.3.1 Source Insight介紹
- 1.3.2 Busybox的使用
- 1.4 本章小結
- 第2章 深入理解JNI
- 2.1 JNI概述
- 2.2 學習JNI的實例:MediaScanner
- 2.3 Java層的MediaScanner分析
- 2.3.1 加載JNI庫
- 2.3.2 Java的native函數和總結
- 2.4 JNI層MediaScanner的分析
- 2.4.1 注冊JNI函數
- 2.4.2 數據類型轉換
- 2.4.3 JNIEnv介紹
- 2.4.4 通過JNIEnv操作jobject
- 2.4.5 jstring介紹
- 2.4.6 JNI類型簽名介紹
- 2.4.7 垃圾回收
- 2.4.8 JNI中的異常處理
- 2.5 本章小結
- 第3章 深入理解init
- 3.1 概述
- 3.2 init分析
- 3.2.1 解析配置文件
- 3.2.2 解析service
- 3.2.3 init控制service
- 3.2.4 屬性服務
- 3.3 本章小結
- 第4章 深入理解zygote
- 4.1 概述
- 4.2 zygote分析
- 4.2.1 AppRuntime分析
- 4.2.2 Welcome to Java World
- 4.2.3 關于zygote的總結
- 4.3 SystemServer分析
- 4.3.1 SystemServer的誕生
- 4.3.2 SystemServer的重要使命
- 4.3.3 關于 SystemServer的總結
- 4.4 zygote的分裂
- 4.4.1 ActivityManagerService發送請求
- 4.4.2 有求必應之響應請求
- 4.4.3 關于zygote分裂的總結
- 4.5 拓展思考
- 4.5.1 虛擬機heapsize的限制
- 4.5.2 開機速度優化
- 4.5.3 Watchdog分析
- 4.6 本章小結
- 第5章 深入理解常見類
- 5.1 概述
- 5.2 以“三板斧”揭秘RefBase、sp和wp
- 5.2.1 第一板斧--初識影子對象
- 5.2.2 第二板斧--由弱生強
- 5.2.3 第三板斧--破解生死魔咒
- 5.2.4 輕量級的引用計數控制類LightRefBase
- 5.2.5 題外話-三板斧的來歷
- 5.3 Thread類及常用同步類分析
- 5.3.1 一個變量引發的思考
- 5.3.2 常用同步類
- 5.4 Looper和Handler類分析
- 5.4.1 Looper類分析
- 5.4.2 Handler分析
- 5.4.3 Looper和Handler的同步關系
- 5.4.4 HandlerThread介紹
- 5.5 本章小結
- 第6章 深入理解Binder
- 6.1 概述
- 6.2 庖丁解MediaServer
- 6.2.1 MediaServer的入口函數
- 6.2.2 獨一無二的ProcessState
- 6.2.3 時空穿越魔術-defaultServiceManager
- 6.2.4 注冊MediaPlayerService
- 6.2.5 秋風掃落葉-StartThread Pool和join Thread Pool分析
- 6.2.6 你徹底明白了嗎
- 6.3 服務總管ServiceManager
- 6.3.1 ServiceManager的原理
- 6.3.2 服務的注冊
- 6.3.3 ServiceManager存在的意義
- 6.4 MediaPlayerService和它的Client
- 6.4.1 查詢ServiceManager
- 6.4.2 子承父業
- 6.5 拓展思考
- 6.5.1 Binder和線程的關系
- 6.5.2 有人情味的訃告
- 6.5.3 匿名Service
- 6.6 學以致用
- 6.6.1 純Native的Service
- 6.6.2 扶得起的“阿斗”(aidl)
- 6.7 本章小結
- 第7章 深入理解Audio系統
- 7.1 概述
- 7.2 AudioTrack的破解
- 7.2.1 用例介紹
- 7.2.2 AudioTrack(Java空間)分析
- 7.2.3 AudioTrack(Native空間)分析
- 7.2.4 關于AudioTrack的總結
- 7.3 AudioFlinger的破解
- 7.3.1 AudioFlinger的誕生
- 7.3.2 通過流程分析AudioFlinger
- 7.3.3 audio_track_cblk_t分析
- 7.3.4 關于AudioFlinger的總結
- 7.4 AudioPolicyService的破解
- 7.4.1 AudioPolicyService的創建
- 7.4.2 重回AudioTrack
- 7.4.3 聲音路由切換實例分析
- 7.4.4 關于AudioPolicy的總結
- 7.5 拓展思考
- 7.5.1 DuplicatingThread破解
- 7.5.2 題外話
- 7.6 本章小結
- 第8章 深入理解Surface系統
- 8.1 概述
- 8.2 一個Activity的顯示
- 8.2.1 Activity的創建
- 8.2.2 Activity的UI繪制
- 8.2.3 關于Activity的總結
- 8.3 初識Surface
- 8.3.1 和Surface有關的流程總結
- 8.3.2 Surface之乾坤大挪移
- 8.3.3 乾坤大挪移的JNI層分析
- 8.3.4 Surface和畫圖
- 8.3.5 初識Surface小結
- 8.4 深入分析Surface
- 8.4.1 與Surface相關的基礎知識介紹
- 8.4.2 SurfaceComposerClient分析
- 8.4.3 SurfaceControl分析
- 8.4.4 writeToParcel和Surface對象的創建
- 8.4.5 lockCanvas和unlockCanvasAndPost分析
- 8.4.6 GraphicBuffer介紹
- 8.4.7 深入分析Surface的總結
- 8.5 SurfaceFlinger分析
- 8.5.1 SurfaceFlinger的誕生
- 8.5.2 SF工作線程分析
- 8.5.3 Transaction分析
- 8.5.4 關于SurfaceFlinger的總結
- 8.6 拓展思考
- 8.6.1 Surface系統的CB對象分析
- 8.6.2 ViewRoot的你問我答
- 8.6.3 LayerBuffer分析
- 8.7 本章小結
- 第9章 深入理解Vold和Rild
- 9.1 概述
- 9.2 Vold的原理與機制分析
- 9.2.1 Netlink和Uevent介紹
- 9.2.2 初識Vold
- 9.2.3 NetlinkManager模塊分析
- 9.2.4 VolumeManager模塊分析
- 9.2.5 CommandListener模塊分析
- 9.2.6 Vold實例分析
- 9.2.7 關于Vold的總結
- 9.3 Rild的原理與機制分析
- 9.3.1 初識Rild
- 9.3.2 RIL_startEventLoop分析
- 9.3.3 RIL_Init分析
- 9.3.4 RIL_register分析
- 9.3.5 關于Rild main函數的總結
- 9.3.6 Rild實例分析
- 9.3.7 關于Rild的總結
- 9.4 拓展思考
- 9.4.1 嵌入式系統的存儲知識介紹
- 9.4.2 Rild和Phone的改進探討
- 9.5 本章小結
- 第10章 深入理解MediaScanner
- 10.1 概述
- 10.2 android.process.media分析
- 10.2.1 MSR模塊分析
- 10.2.2 MSS模塊分析
- 10.2.3 android.process.media媒體掃描工作的流程總結
- 10.3 MediaScanner分析
- 10.3.1 Java層分析
- 10.3.2 JNI層分析
- 10.3.3 PVMediaScanner分析
- 10.3.4 關于MediaScanner的總結
- 10.4 拓展思考
- 10.4.1 MediaScannerConnection介紹
- 10.4.2 我問你答
- 10.5 本章小結