在分析Vold的代碼前,先介紹一下Linux系統中的Netlink和Uevent。
1. Netlink的介紹
Netlink是Linux系統中一種用戶空間進程和Kernel進行通信的機制,通過這個機制,位于用戶空間的進程,可接收來自Kernel的一些信息(例如Vold中用到的USB或SD的插拔消息),同時應用層也可通過Netlink向Kernel發送一些控制命令。
目前,Linux系統并沒有為Netlink單獨設計一套系統調用,而是復用了Socket的操作接口,只在創建Socket時會有一些特殊的地方。Netlink的具體使用方法,在進行代碼分析時再來了解,讀者目前只需知道,通過Netlink機制應用層,可接收來自Kernel的消息即可。
2. Uevent介紹
Uevent和Linux的Udev設備文件系統和設備模型有關系,它實際上就是一串字符串,字符串的內容可告知發生了什么事情。下面通過一個實例來直觀感受Uevent:
在SD卡插入手機后(我們這里以SD卡為例),系統會檢測到這個設備的插入,然后內核會通過Netlink發送一個消息給Vold,Vold將根據接收到的消息進行處理,例如掛載這個SD卡。內核發送的這個消息,就是Uevent,其中U代表User space(應用層空間)。下面看SD卡插入時Vold截獲到的Uevent消息。在我的G7手機上,Uevent的內容如下,注意,其中//號或/**/號中的內容是為方便讀者理解而加的注釋:
**SD卡插入的Uevent消息**
~~~
//mmc表示MultiMedia Card,這里統稱為SD卡
add@/devices/platform/msm_sdcc.2/mmc_host/mmc1/mmc1:c9f2/block/mmcblk0
ACTION=add //add表示設備插入,另外還有remove和change等動作
//DEVPATH表示該設備位于/sys目錄中的設備路徑
DEVPATH=/devices/platform/msm_sdcc.2/mmc_host/mmc1/mmc1:c9f2/block/mmcblk0
/*
SUBSYSTEM表示該設備屬于哪一類設備,block為塊設備,磁盤也屬于這一類設備,另外還有
character(字符)設備等類型。
*/
SUBSYSTEM=block
MAJOR=179//MAJOR和MINOR分別表示該設備的主次設備號,二者聯合起來可以標識一個設備
MINOR=0
DEVNAME=mmcblk0
DEVTYPE=disk//設備Type為disk
NPARTS=3 //這個表示該SD卡上的分區,我的SD卡上有三塊分區
SEQNUM=1357//序號
~~~
由于我的SD卡上還有分區,所以還會接收到和分區相關的Uevent。簡單看一下:
**SD卡插入后和分區相關的Uevent消息**
~~~
add@/devices/platform/msm_sdcc.2/mmc_host/mmc1/mmc1:c9f2/block/mmcblk0/mmcblk0p1
ACTION=add
//比上面那個DEVPATH多了一個mmcblk0p1
DEVPATH=/devices/platform/msm_sdcc.2/mmc_host/mmc1/mmc1:c9f2/block/mmcblk0/mmcblk0p1
SUBSYSTEM=block
MAJOR=179
MINOR=1
DEVNAME=mmcblk0p1
DEVTYPE=partition //設備類型變為partition,表示分區
PARTN=1
SEQNUM=1358
~~~
通過上面實例,我們和Uevent來了一次親密接觸,具體到Vold,也就是內核通過Uevent告知外部存儲系統發生了哪些事情,那么Uevent在什么情況下會由Kernel發出呢?
- 當設備發生變化時,這會引起Kernel發送Uevent消息,例如設備的插入和拔出等。如果Vold在設備發生變化之前已經建立了Netlink IPC通信,那么Vold可以接收到這些Uevent消息。這種情況是由設備發生變化而觸發的。
- 設備一般在/sys對應的目錄下有一個叫uevent的文件,往該文件中寫入指定的數據,也會觸Kernel發送和該設備相關的Uevent消息,這是由應用層觸發的。例如Vold啟動時,會往這些uevent文件中寫數據,通過這種方式促使內核發送Uevent消息,這樣Vold就能得到這些設備的當前信息了。
根據上面介紹可知,Netlink和Uevent的目的,就是讓Vold隨時獲悉外部存儲系統的信息,這至關重要。我們總不會希望發生諸如SD卡都被拔了,而Vold卻一無所知的情況吧?
- 前言
- 第1章 閱讀前的準備工作
- 1.1 系統架構
- 1.1.1 Android系統架構
- 1.1.2 本書的架構
- 1.2 搭建開發環境
- 1.2.1 下載源碼
- 1.2.2 編譯源碼
- 1.3 工具介紹
- 1.3.1 Source Insight介紹
- 1.3.2 Busybox的使用
- 1.4 本章小結
- 第2章 深入理解JNI
- 2.1 JNI概述
- 2.2 學習JNI的實例:MediaScanner
- 2.3 Java層的MediaScanner分析
- 2.3.1 加載JNI庫
- 2.3.2 Java的native函數和總結
- 2.4 JNI層MediaScanner的分析
- 2.4.1 注冊JNI函數
- 2.4.2 數據類型轉換
- 2.4.3 JNIEnv介紹
- 2.4.4 通過JNIEnv操作jobject
- 2.4.5 jstring介紹
- 2.4.6 JNI類型簽名介紹
- 2.4.7 垃圾回收
- 2.4.8 JNI中的異常處理
- 2.5 本章小結
- 第3章 深入理解init
- 3.1 概述
- 3.2 init分析
- 3.2.1 解析配置文件
- 3.2.2 解析service
- 3.2.3 init控制service
- 3.2.4 屬性服務
- 3.3 本章小結
- 第4章 深入理解zygote
- 4.1 概述
- 4.2 zygote分析
- 4.2.1 AppRuntime分析
- 4.2.2 Welcome to Java World
- 4.2.3 關于zygote的總結
- 4.3 SystemServer分析
- 4.3.1 SystemServer的誕生
- 4.3.2 SystemServer的重要使命
- 4.3.3 關于 SystemServer的總結
- 4.4 zygote的分裂
- 4.4.1 ActivityManagerService發送請求
- 4.4.2 有求必應之響應請求
- 4.4.3 關于zygote分裂的總結
- 4.5 拓展思考
- 4.5.1 虛擬機heapsize的限制
- 4.5.2 開機速度優化
- 4.5.3 Watchdog分析
- 4.6 本章小結
- 第5章 深入理解常見類
- 5.1 概述
- 5.2 以“三板斧”揭秘RefBase、sp和wp
- 5.2.1 第一板斧--初識影子對象
- 5.2.2 第二板斧--由弱生強
- 5.2.3 第三板斧--破解生死魔咒
- 5.2.4 輕量級的引用計數控制類LightRefBase
- 5.2.5 題外話-三板斧的來歷
- 5.3 Thread類及常用同步類分析
- 5.3.1 一個變量引發的思考
- 5.3.2 常用同步類
- 5.4 Looper和Handler類分析
- 5.4.1 Looper類分析
- 5.4.2 Handler分析
- 5.4.3 Looper和Handler的同步關系
- 5.4.4 HandlerThread介紹
- 5.5 本章小結
- 第6章 深入理解Binder
- 6.1 概述
- 6.2 庖丁解MediaServer
- 6.2.1 MediaServer的入口函數
- 6.2.2 獨一無二的ProcessState
- 6.2.3 時空穿越魔術-defaultServiceManager
- 6.2.4 注冊MediaPlayerService
- 6.2.5 秋風掃落葉-StartThread Pool和join Thread Pool分析
- 6.2.6 你徹底明白了嗎
- 6.3 服務總管ServiceManager
- 6.3.1 ServiceManager的原理
- 6.3.2 服務的注冊
- 6.3.3 ServiceManager存在的意義
- 6.4 MediaPlayerService和它的Client
- 6.4.1 查詢ServiceManager
- 6.4.2 子承父業
- 6.5 拓展思考
- 6.5.1 Binder和線程的關系
- 6.5.2 有人情味的訃告
- 6.5.3 匿名Service
- 6.6 學以致用
- 6.6.1 純Native的Service
- 6.6.2 扶得起的“阿斗”(aidl)
- 6.7 本章小結
- 第7章 深入理解Audio系統
- 7.1 概述
- 7.2 AudioTrack的破解
- 7.2.1 用例介紹
- 7.2.2 AudioTrack(Java空間)分析
- 7.2.3 AudioTrack(Native空間)分析
- 7.2.4 關于AudioTrack的總結
- 7.3 AudioFlinger的破解
- 7.3.1 AudioFlinger的誕生
- 7.3.2 通過流程分析AudioFlinger
- 7.3.3 audio_track_cblk_t分析
- 7.3.4 關于AudioFlinger的總結
- 7.4 AudioPolicyService的破解
- 7.4.1 AudioPolicyService的創建
- 7.4.2 重回AudioTrack
- 7.4.3 聲音路由切換實例分析
- 7.4.4 關于AudioPolicy的總結
- 7.5 拓展思考
- 7.5.1 DuplicatingThread破解
- 7.5.2 題外話
- 7.6 本章小結
- 第8章 深入理解Surface系統
- 8.1 概述
- 8.2 一個Activity的顯示
- 8.2.1 Activity的創建
- 8.2.2 Activity的UI繪制
- 8.2.3 關于Activity的總結
- 8.3 初識Surface
- 8.3.1 和Surface有關的流程總結
- 8.3.2 Surface之乾坤大挪移
- 8.3.3 乾坤大挪移的JNI層分析
- 8.3.4 Surface和畫圖
- 8.3.5 初識Surface小結
- 8.4 深入分析Surface
- 8.4.1 與Surface相關的基礎知識介紹
- 8.4.2 SurfaceComposerClient分析
- 8.4.3 SurfaceControl分析
- 8.4.4 writeToParcel和Surface對象的創建
- 8.4.5 lockCanvas和unlockCanvasAndPost分析
- 8.4.6 GraphicBuffer介紹
- 8.4.7 深入分析Surface的總結
- 8.5 SurfaceFlinger分析
- 8.5.1 SurfaceFlinger的誕生
- 8.5.2 SF工作線程分析
- 8.5.3 Transaction分析
- 8.5.4 關于SurfaceFlinger的總結
- 8.6 拓展思考
- 8.6.1 Surface系統的CB對象分析
- 8.6.2 ViewRoot的你問我答
- 8.6.3 LayerBuffer分析
- 8.7 本章小結
- 第9章 深入理解Vold和Rild
- 9.1 概述
- 9.2 Vold的原理與機制分析
- 9.2.1 Netlink和Uevent介紹
- 9.2.2 初識Vold
- 9.2.3 NetlinkManager模塊分析
- 9.2.4 VolumeManager模塊分析
- 9.2.5 CommandListener模塊分析
- 9.2.6 Vold實例分析
- 9.2.7 關于Vold的總結
- 9.3 Rild的原理與機制分析
- 9.3.1 初識Rild
- 9.3.2 RIL_startEventLoop分析
- 9.3.3 RIL_Init分析
- 9.3.4 RIL_register分析
- 9.3.5 關于Rild main函數的總結
- 9.3.6 Rild實例分析
- 9.3.7 關于Rild的總結
- 9.4 拓展思考
- 9.4.1 嵌入式系統的存儲知識介紹
- 9.4.2 Rild和Phone的改進探討
- 9.5 本章小結
- 第10章 深入理解MediaScanner
- 10.1 概述
- 10.2 android.process.media分析
- 10.2.1 MSR模塊分析
- 10.2.2 MSS模塊分析
- 10.2.3 android.process.media媒體掃描工作的流程總結
- 10.3 MediaScanner分析
- 10.3.1 Java層分析
- 10.3.2 JNI層分析
- 10.3.3 PVMediaScanner分析
- 10.3.4 關于MediaScanner的總結
- 10.4 拓展思考
- 10.4.1 MediaScannerConnection介紹
- 10.4.2 我問你答
- 10.5 本章小結