1. **`enable.auto.commit`**
指定了消費者是否自動提交偏移量,默認值是 true,為了盡量避免重復數據和數據丟失,可以把它設置為 false,有自己控制合適提交偏移量,如果設置為true,可以通過設置 auto.commit.interval.ms 屬性來控制提交的頻率。
2. **`auto.offset.reset`**
該參數指定了消費者在讀取一個沒有 Offset 或者 Offset 無效(消費者長時間失效,當前的 Offset 已經過時并且被刪除了)的分區的情況下,應該作何處理,默認值是 latest,也就是從最新記錄讀取數據(消費者啟動之后生成的記錄),另一個值是 earliest,意思是在偏移量無效的情況下,消費者從起始位置開始讀取數據。
3. **`session.timeout.ms`**
該參數指定了當消費者被認為已經掛掉之前可以與服務器斷開連接的時間。默認是 3s,消費者在 3s 之內沒有再次向服務器發送心跳,那么將會被認為已經死亡。此時,協調器將會觸發再均衡,把它的分區分配給其他的消費者,該參數與 heartbeat.interval.ms 緊密相關,該參數定義了消費者發送心跳的時間間隔,也就是心跳頻率,一般要同時修改這兩個參數,heartbeat.interval.ms 參數值必須要小 于 session.timeout.ms ,一般是 session.timeout.ms 的三分之一,比如,session.timeout.ms 設置成 3min,那么 heartbeat.interval.ms 一般設置成 1min,這樣,可以更快的檢測以及恢復崩潰的節點,不過長時間的輪詢或垃圾收集可能導致非預期的再均衡(有一種情況就是網絡延遲,本身消費者是沒有掛掉的,但是網絡延遲造成了心跳超時,這樣本不該發生再均衡,但是因為網絡原因造成了非預期的再均衡),把該參數的值設置得大一些,可以減少意外的再均衡,不過檢測節點崩潰需要更長的時間。
4. **`max.partition.fetch.bytes`**
該參數指定了服務器從每個分區里返回給消費者的最大字節數。它的默認值是 1MB,也就是說,KafkaConsumer.poll()方法從每個分區里返回的記錄最多不超 max.partitions.fetch.bytes 指定的字節。如果一個主題有 20 個分區和 5 個消費者,那么每個消費者需要至少 4MB 的可用內存來接收記錄。在為消費者分配內存時,可以給它們多分配一些,因為如果群組里有消費者發生崩潰,剩下的消費者需要處理更多的分區。max.partition.fetch.bytes 的值必須比 Broker 能夠接收的最大消息的字節數(通過 max.message.size 屬性配置)大, 否則消費者可能無法讀取這些消息,導致消費者一直掛起重試,例如,max.message.size 設置為 2MB,而該屬性設置為 1MB,那么當一個生產者可能就會生產一條大小為 2MB的消息,那么就會出現問題,消費者能從分區取回的最大消息大小就只有 1MB,但是數據量是 2MB,所以就會導致消費者一直掛起重試。
在設置該屬性時,另一個需要考慮的因素是消費者處理數據的時間。消費者需要頻繁調用 poll()方法來避免會話過期和發生分區再均衡,如果單次調用 poll()返回的數據太多,消費者需要更多的時間來處理,可能無怯及時進行下一個輪詢來避免會話過期。如果出現這種情況,可以把 max.partitioin.fetch.bytes 值改小,或者延長會話過期時間。
5. **`fetch.min.bytes`**
消費者從服務器獲取記錄的最小字節數,Broker 收到消費者拉取數據的請求的時候,如果可用數據量小于設置的值,那么 Broker 將會等待有足夠可用的數據的時候才返回給消費者,這樣可以降低消費者和 Broker 的工作負載。因為當主題不是很活躍的情況下,就不需要來來回回的處理消息,如果沒有很多可用數據,但消費者的CPU 使用率卻很高,那么就需要把該屬性的值設得比默認值大。如果消費者的數量比較多,把該屬性的值設置得大一點可以降低 Broker 的工作負載。
6. **`fetch.max.wait.ms`**
fetch.min.bytes 設置了 Broker 返回給消費者最小的數據量,而fetch.max.wait.ms 設置的則是Broker的等待時間,兩個屬性只要滿足了任何一條,Broker 都會將數據返回給消費者,也就是說舉個例子,fetch.min.bytes 設置成 1MB,fetch.max.wait.ms 設置成 1000ms,那么如果在 1000ms 時間內,如果數據量達到了 1MB,Broker 將會把數據返回給消費者;如果已經過了 1000ms,但是數據量還沒有達到 1MB,那么 Broker 仍然會把當前積累的所有數據返回給消費者。
7. **`receive.buffer.bytes + send.buffer.bytes`**
socket 在讀寫數據時用到的 TCP 緩沖區也可以設置大小。如果它們被設為-1 ,就使用操作系統的默認值。如果生產者或消費者與 broker 處于不同的數據中心內,可以適當增大這些值,因為跨數據中心的網絡一般都有比較高的延遲和比較低的帶寬。
8. **`client.id`**
Consumer 進程的標識。如果設置成人為可讀的值,跟蹤問題會比較方便。
- Hadoop
- hadoop是什么?
- Hadoop組成
- hadoop官網
- hadoop安裝
- hadoop配置
- 本地運行模式配置
- 偽分布運行模式配置
- 完全分布運行模式配置
- HDFS分布式文件系統
- HDFS架構
- HDFS設計思想
- HDFS組成架構
- HDFS文件塊大小
- HDFS優缺點
- HDFS Shell操作
- HDFS JavaAPI
- 基本使用
- HDFS的I/O 流操作
- 在SpringBoot項目中的API
- HDFS讀寫流程
- HDFS寫流程
- HDFS讀流程
- NN和SNN關系
- NN和SNN工作機制
- Fsimage和 Edits解析
- checkpoint時間設置
- NameNode故障處理
- 集群安全模式
- DataNode工作機制
- 支持的文件格式
- MapReduce分布式計算模型
- MapReduce是什么?
- MapReduce設計思想
- MapReduce優缺點
- MapReduce基本使用
- MapReduce編程規范
- WordCount案例
- MapReduce任務進程
- Hadoop序列化對象
- 為什么要序列化
- 常用數據序列化類型
- 自定義序列化對象
- MapReduce框架原理
- MapReduce工作流程
- MapReduce核心類
- MapTask工作機制
- Shuffle機制
- Partition分區
- Combiner合并
- ReduceTask工作機制
- OutputFormat
- 使用MapReduce實現SQL Join操作
- Reduce join
- Reduce join 代碼實現
- Map join
- Map join 案例實操
- MapReduce 開發總結
- Hadoop 優化
- MapReduce 優化需要考慮的點
- MapReduce 優化方法
- 分布式資源調度框架 Yarn
- Yarn 基本架構
- ResourceManager(RM)
- NodeManager(NM)
- ApplicationMaster
- Container
- 作業提交全過程
- JobHistoryServer 使用
- 資源調度器
- 先進先出調度器(FIFO)
- 容量調度器(Capacity Scheduler)
- 公平調度器(Fair Scheduler)
- Yarn 常用命令
- Zookeeper
- zookeeper是什么?
- zookeeper完全分布式搭建
- Zookeeper特點
- Zookeeper數據結構
- Zookeeper 內部原理
- 選舉機制
- stat 信息中字段解釋
- 選擇機制中的概念
- 選舉消息內容
- 監聽器原理
- Hadoop 高可用集群搭建
- Zookeeper 應用
- Zookeeper Shell操作
- Zookeeper Java應用
- Hive
- Hive是什么?
- Hive的優缺點
- Hive架構
- Hive元數據存儲模式
- 內嵌模式
- 本地模式
- 遠程模式
- Hive環境搭建
- 偽分布式環境搭建
- Hive命令工具
- 命令行模式
- 交互模式
- Hive數據類型
- Hive數據結構
- 參數配置方式
- Hive數據庫
- 數據庫存儲位置
- 數據庫操作
- 表的創建
- 建表基本語法
- 內部表
- 外部表
- 臨時表
- 建表高階語句
- 表的刪除與修改
- 分區表
- 靜態分區
- 動態分區
- 分桶表
- 創建分桶表
- 分桶抽樣
- Hive視圖
- 視圖的創建
- 側視圖Lateral View
- Hive數據導入導出
- 導入數據
- 導出數據
- 查詢表數據量
- Hive事務
- 事務是什么?
- Hive事務的局限性和特點
- Hive事務的開啟和設置
- Hive PLSQL
- Hive高階查詢
- 查詢基本語法
- 基本查詢
- distinct去重
- where語句
- 列正則表達式
- 虛擬列
- CTE查詢
- 嵌套查詢
- join語句
- 內連接
- 左連接
- 右連接
- 全連接
- 多表連接
- 笛卡爾積
- left semi join
- group by分組
- having刷選
- union與union all
- 排序
- order by
- sort by
- distribute by
- cluster by
- 聚合運算
- 基本聚合
- 高級聚合
- 窗口函數
- 序列窗口函數
- 聚合窗口函數
- 分析窗口函數
- 窗口函數練習
- 窗口子句
- Hive函數
- Hive函數分類
- 字符串函數
- 類型轉換函數
- 數學函數
- 日期函數
- 集合函數
- 條件函數
- 聚合函數
- 表生成函數
- 自定義Hive函數
- 自定義函數分類
- 自定義Hive函數流程
- 添加JAR包的方式
- 自定義臨時函數
- 自定義永久函數
- Hive優化
- Hive性能調優工具
- EXPLAIN
- ANALYZE
- Fetch抓取
- 本地模式
- 表的優化
- 小表 join 大表
- 大表 join 大表
- 開啟Map Join
- group by
- count(distinct)
- 笛卡爾積
- 行列過濾
- 動態分區調整
- 分區分桶表
- 數據傾斜
- 數據傾斜原因
- 調整Map數
- 調整Reduce數
- 產生數據傾斜的場景
- 并行執行
- 嚴格模式
- JVM重用
- 推測執行
- 啟用CBO
- 啟動矢量化
- 使用Tez引擎
- 壓縮算法和文件格式
- 文件格式
- 壓縮算法
- Zeppelin
- Zeppelin是什么?
- Zeppelin安裝
- 配置Hive解釋器
- Hbase
- Hbase是什么?
- Hbase環境搭建
- Hbase分布式環境搭建
- Hbase偽分布式環境搭建
- Hbase架構
- Hbase架構組件
- Hbase數據存儲結構
- Hbase原理
- Hbase Shell
- 基本操作
- 表操作
- namespace
- Hbase Java Api
- Phoenix集成Hbase
- Phoenix是什么?
- 安裝Phoenix
- Phoenix數據類型
- Phoenix Shell
- HBase與Hive集成
- HBase與Hive的對比
- HBase與Hive集成使用
- Hbase與Hive集成原理
- HBase優化
- RowKey設計
- 內存優化
- 基礎優化
- Hbase管理
- 權限管理
- Region管理
- Region的自動拆分
- Region的預拆分
- 到底采用哪種拆分策略?
- Region的合并
- HFile的合并
- 為什么要有HFile的合并
- HFile合并方式
- Compaction執行時間
- Compaction相關控制參數
- 演示示例
- Sqoop
- Sqoop是什么?
- Sqoop環境搭建
- RDBMS導入到HDFS
- RDBMS導入到Hive
- RDBMS導入到Hbase
- HDFS導出到RDBMS
- 使用sqoop腳本
- Sqoop常用命令
- Hadoop數據模型
- TextFile
- SequenceFile
- Avro
- Parquet
- RC&ORC
- 文件存儲格式比較
- Spark
- Spark是什么?
- Spark優勢
- Spark與MapReduce比較
- Spark技術棧
- Spark安裝
- Spark Shell
- Spark架構
- Spark編程入口
- 編程入口API
- SparkContext
- SparkSession
- Spark的maven依賴
- Spark RDD編程
- Spark核心數據結構-RDD
- RDD 概念
- RDD 特性
- RDD編程
- RDD編程流程
- pom依賴
- 創建算子
- 轉換算子
- 動作算子
- 持久化算子
- RDD 與閉包
- csv/json數據源
- Spark分布式計算原理
- RDD依賴
- RDD轉換
- RDD依賴
- DAG工作原理
- Spark Shuffle原理
- Shuffle的作用
- ShuffleManager組件
- Shuffle實踐
- RDD持久化
- 緩存機制
- 檢查點
- 檢查點與緩存的區別
- RDD共享變量
- 廣播變量
- 累計器
- RDD分區設計
- 數據傾斜
- 數據傾斜的根本原因
- 定位導致的數據傾斜
- 常見數據傾斜解決方案
- Spark SQL
- SQL on Hadoop
- Spark SQL是什么
- Spark SQL特點
- Spark SQL架構
- Spark SQL運行原理
- Spark SQL編程
- Spark SQL編程入口
- 創建Dataset
- Dataset是什么
- SparkSession創建Dataset
- 樣例類創建Dataset
- 創建DataFrame
- DataFrame是什么
- 結構化數據文件創建DataFrame
- RDD創建DataFrame
- Hive表創建DataFrame
- JDBC創建DataFrame
- SparkSession創建
- RDD、DataFrame、Dataset
- 三者對比
- 三者相互轉換
- RDD轉換為DataFrame
- DataFrame轉換為RDD
- DataFrame API
- DataFrame API分類
- Action 操作
- 基礎 Dataset 函數
- 強類型轉換
- 弱類型轉換
- Spark SQL外部數據源
- Parquet文件
- Hive表
- RDBMS表
- JSON/CSV
- Spark SQL函數
- Spark SQL內置函數
- 自定SparkSQL函數
- Spark SQL CLI
- Spark SQL性能優化
- Spark GraphX圖形數據分析
- 為什么需要圖計算
- 圖的概念
- 圖的術語
- 圖的經典表示法
- Spark Graphix簡介
- Graphx核心抽象
- Graphx Scala API
- 核心組件
- 屬性圖應用示例1
- 屬性圖應用示例2
- 查看圖信息
- 圖的算子
- 連通分量
- PageRank算法
- Pregel分布式計算框架
- Flume日志收集
- Flume是什么?
- Flume官方文檔
- Flume架構
- Flume安裝
- Flume使用過程
- Flume組件
- Flume工作流程
- Flume事務
- Source、Channel、Sink文檔
- Source文檔
- Channel文檔
- Sink文檔
- Flume攔截器
- Flume攔截器概念
- 配置攔截器
- 自定義攔截器
- Flume可靠性保證
- 故障轉移
- 負載均衡
- 多層代理
- 多路復用
- Kafka
- 消息中間件MQ
- Kafka是什么?
- Kafka安裝
- Kafka本地單機部署
- Kafka基本命令使用
- Topic的生產與消費
- 基本命令
- 查看kafka目錄
- Kafka架構
- Kafka Topic
- Kafka Producer
- Kafka Consumer
- Kafka Partition
- Kafka Message
- Kafka Broker
- 存儲策略
- ZooKeeper在Kafka中的作用
- 副本同步
- 容災
- 高吞吐
- Leader均衡機制
- Kafka Scala API
- Producer API
- Consumer API
- Kafka優化
- 消費者參數優化
- 生產者參數優化
- Spark Streaming
- 什么是流?
- 批處理和流處理
- Spark Streaming簡介
- 流數據處理架構
- 內部工作流程
- StreamingContext組件
- SparkStreaming的編程入口
- WordCount案例
- DStream
- DStream是什么?
- Input DStream與Receivers接收器
- DStream API
- 轉換操作
- 輸出操作
- 數據源
- 數據源分類
- Socket數據源
- 統計HDFS文件的詞頻
- 處理狀態數據
- SparkStreaming整合SparkSQL
- SparkStreaming整合Flume
- SparkStreaming整合Kafka
- 自定義數據源
- Spark Streaming優化策略
- 優化運行時間
- 優化內存使用
- 數據倉庫
- 數據倉庫是什么?
- 數據倉庫的意義
- 數據倉庫和數據庫的區別
- OLTP和OLAP的區別
- OLTP的特點
- OLAP的特點
- OLTP與OLAP對比
- 數據倉庫架構
- Inmon架構
- Kimball架構
- 混合型架構
- 數據倉庫的解決方案
- 數據ETL
- 數據倉庫建模流程
- 維度模型
- 星型模式
- 雪花模型
- 星座模型
- 數據ETL處理
- 數倉分層術語
- 數據抽取方式
- CDC抽取方案
- 數據轉換
- 常見的ETL工具