<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                ```scala /** *ds.agg(...)是 ds.groupBy().agg(...)的簡寫。 */ def agg(expr: Column, exprs: Column*): DataFrame //示例 ds.agg(max($"age"), avg($"salary")) ds.groupBy().agg(max($"age"), avg($"salary")) def agg(exprs: Map[String, String]): DataFrame def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame //示例 ds.agg(Map("age" -> "max", "salary" -> "avg")) //等價于 ds.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) /** *根據列名選擇列并將其作為列返回。 */ def apply(colName: String): Column def col(colName: String): Column def colRegex(colName: String): Column //指定列名前綴 /** *笛卡爾積。 */ def crossJoin(right: Dataset[_]): DataFrame /** *使用指定的列為當前數據集創建多維數據集,以便在其上運行聚合。 */ def cube(col1: String, cols: String*): RelationalGroupedDataset def cube(cols: Column*): RelationalGroupedDataset /** *刪除列。 * def drop(col: Column): DataFrame def drop(colNames: String*): DataFrame def drop(colName: String): DataFrame /** *分組 */ def groupBy(col1: String, cols: String*): RelationalGroupedDataset def groupBy(cols: Column*): RelationalGroupedDataset /** *表連接。 */ def join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame def join(right: Dataset[_], joinExprs: Column): DataFrame def join(right: Dataset[_], usingColumns: Seq[String], joinType: String) : DataFrame def join(right: Dataset[_], usingColumns: Seq[String]): DataFrame def join(right: Dataset[_], usingColumn: String): DataFrame def join(right: Dataset[_]): DataFrame /** *返回一個處理丟失數據的 DataFrameNaFunctions。 */ def na: DataFrameNaFunctions //示例 df.na.drop()//刪除包含空值的行 /** *使用指定的列為當前數據集創建多維匯總,以便在其上運行聚合。 */ def rollup(col1: String, cols: String*): RelationalGroupedDataset def rollup(cols: Column*): RelationalGroupedDataset /** *基于列的表達式選擇一個 Dataset。 */ def select(col: String, cols: String*): DataFrame def select(cols: Column*): DataFrame /** *這是 select 的一個變體,它接受 SQL 表達式。 */ def selectExpr(exprs: String*): DataFrame // 以下是等價的: ds.selectExpr("colA", "colB as newName", "abs(colC)") ds.select(expr("colA"), expr("colB as newName"), expr("abs(colC)")) /** *對統計的支持。 */ def stat: DataFrameStatFunctions //示例 ds.stat.freqItems(Seq("a")) //在名稱為 a 的列中查找頻繁項 /** *通過添加列或替換具有相同名稱的現有列來返回新數據集。 */ def withColumn(colName: String, col: Column): DataFrame def withColumnRenamed(existingName: String, newName: String): DataFrame ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看