<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 矩陣的按行遍歷與按列遍歷 > 原文: [https://www.geeksforgeeks.org/row-wise-vs-column-wise-traversal-matrix/](https://www.geeksforgeeks.org/row-wise-vs-column-wise-traversal-matrix/) 遍歷矩陣的兩種常見方式是行優先級和列優先級。 **行主要命令**:當逐行訪問矩陣時。 **列主要訂單**:當逐列訪問矩陣時。 例子: ``` Input : mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} Output : Row-wise: 1 2 3 4 5 6 7 8 9 Col-wise : 1 4 7 2 5 8 3 6 9 ``` **差異**:如果根據時間復雜度來看,兩者都導致 **`O(n^2)`**,但是當涉及到緩存級別時,訂單訪問之一將 與其他人相比更快 這取決于我們使用的語言。 像在 **C** 中一樣,以行主格式存儲矩陣,因此在第 i <sup>個</sup>之后訪問第 i + 1 <sup>個</sup>元素時,很可能會導致命中, 這將進一步減少編程時間。 以下代碼顯示行主訪問和列主訪問的時間差。 ## C++ ```cpp // C program showing time difference // in row major and column major access #include <stdio.h> #include <time.h> // taking MAX 10000 so that time difference // can be shown #define MAX 10000 int arr[MAX][MAX] = {0}; void rowMajor() { ??int i, j; ??// accessing element row wise ??for (i = 0; i < MAX; i++) { ????for (j = 0; j < MAX; j++) { ??????arr[i][j]++; ????} ??} } void colMajor() { ??int i, j; ??// accessing element column wise ??for (i = 0; i < MAX; i++) { ????for (j = 0; j < MAX; j++) { ??????arr[j][i]++; ????} ??} } // driver code int main() { ??int i, j; ??// Time taken by row major order ??clock_t t = clock(); ??rowMajor(); ??t = clock() - t; ??printf("Row major access time :%f s\n",? ????????????????t / (float)CLOCKS_PER_SEC); ??// Time taken by column major order ??t = clock(); ??colMajor(); ??t = clock() - t; ??printf("Column major access time :%f s\n",? ???????????????t / (float)CLOCKS_PER_SEC); ??return 0; } ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看