<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 兩種矩陣的 Kronecker 積 > 原文: [https://www.geeksforgeeks.org/kronecker-product-two-matrices/](https://www.geeksforgeeks.org/kronecker-product-two-matrices/) 給定![ {m}\times{n} ](https://img.kancloud.cn/0d/93/0d93b2169e6583a2490312f0a17e90ae_70x13.png "Rendered by QuickLaTeX.com")矩陣 A 和![ {p}\times{q} ](https://img.kancloud.cn/c8/58/c858f8316dc270afb180cf7e9eba245f_58x18.png "Rendered by QuickLaTeX.com")矩陣 B,它們的 **Kronecker 積** C = A 張量 B,也稱為它們的矩陣直接積,是![ {(mp)}\times{(nq)} ](https://img.kancloud.cn/82/3f/823fdc1821ac894228edb0b7e08ba25f_134x27.png "Rendered by QuickLaTeX.com")矩陣。 ``` A tensor B = |a11B a12B| |a21B a22B| = |a11b11 a11b12 a12b11 a12b12| |a11b21 a11b22 a12b21 a12b22| |a11b31 a11b32 a12b31 a12b32| |a21b11 a21b12 a22b11 a22b12| |a21b21 a21b22 a22b21 a22b22| |a21b31 a21b32 a22b31 a22b32| ``` **示例**: ``` 1\. The matrix direct(kronecker) product of the 2×2 matrix A and the 2×2 matrix B is given by the 4×4 matrix : Input : A = 1 2 B = 0 5 3 4 6 7 Output : C = 0 5 0 10 6 7 12 14 0 15 0 20 18 21 24 28 2\. The matrix direct(kronecker) product of the 2×3 matrix A and the 3×2 matrix B is given by the 6×6 matrix : Input : A = 1 2 B = 0 5 2 3 4 6 7 3 1 0 Output : C = 0 5 2 0 10 4 6 7 3 12 14 6 0 15 6 0 20 8 18 21 9 24 28 12 0 5 2 0 0 0 6 7 3 0 0 0 ``` 下面是找到兩個矩陣的 **Kronecker 乘積**并將其存儲為矩陣 C 的代碼: ## C++ ```cpp // C++ code to find the Kronecker Product of two // matrices and stores it as matrix C #include <iostream> using namespace std; // rowa and cola are no of rows and columns // of matrix A // rowb and colb are no of rows and columns // of matrix B const int cola = 2, rowa = 3, colb = 3, rowb = 2; // Function to computes the Kronecker Product // of two matrices void Kroneckerproduct(int A[][cola], int B[][colb]) { ????int C[rowa * rowb][cola * colb]; ????// i loops till rowa ????for (int i = 0; i < rowa; i++) { ????????// k loops till rowb ????????for (int k = 0; k < rowb; k++) { ????????????// j loops till cola ????????????for (int j = 0; j < cola; j++) { ????????????????// l loops till colb ????????????????for (int l = 0; l < colb; l++) { ????????????????????// Each element of matrix A is ????????????????????// multiplied by whole Matrix B ????????????????????// resp and stored as Matrix C ????????????????????C[i + l + 1][j + k + 1] = A[i][j] * B[k][l]; ????????????????????cout << C[i + l + 1][j + k + 1] << " "; ????????????????} ????????????} ????????????cout << endl; ????????} ????} } // Driver Code int main() { ????int A[3][2] = { { 1, 2 }, { 3, 4 }, { 1, 0 } }, ????????B[2][3] = { { 0, 5, 2 }, { 6, 7, 3 } }; ????Kroneckerproduct(A, B); ????return 0; } //This code is contributed by shubhamsingh10 ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看