<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                [TOC] ## 向量叉積 ### 2d-向量叉積 `$ (x_{1},y_{1})\times(x_{2},y_{2})= \begin{vmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \\ \end{vmatrix} =x_{1}y_{2}-x_{2}y_{1} $` 中間的`$ \begin{vmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \\ \end{vmatrix} $`稱為行列式 如: `(1,0)x(0,1)=1-0=1` `(0,1)x(1,0)=0-1=-1` 叉積在坐標系中就是兩個向量的面積 #### 叉積的幾何定義 `$ \vec{a} \times \vec{b} = \left | \vec{a} \right | \times \left | \vec{b} \right | \times sine \theta $` ### 3d -向量叉積 ![](https://img.kancloud.cn/0d/e3/0de32461040be688c2969e93a87cce50_800x364.png) ### 行列式求值 推薦網站 https://matrix.reshish.com/determinant.php ![](https://img.kancloud.cn/e4/35/e4351e6147fa455fc3f721d8d7aefa60_184x96.png) ![](https://img.kancloud.cn/ce/55/ce555d0d2b5bbc9d419e3a7ae8828bdd_406x104.png) 行列式 `|A| = a(ei - fh) - b(di - fg) + c(dh - eg)` - 把 a 乘以不在 a 的行或列上的 2×2 矩陣的行列式 - 以 b 和 c 也做相同的計算 - 把結果加在一起,不過 b 前面有個負號 ## 向量點積 公式: `$ (x_{1},y_{1}) \cdot (x_{x},y_{2}) =x_{1}y_{2}+x_{2}y_{2} $` 如: ``` (1,0)*(0,1)=0 (2,0)*(2,0)=4 (1,2)*(2,1)=4 ``` ![](https://img.kancloud.cn/73/1d/731d4354dcde93808f43d56f7196284a_400x383.png) 規律: `$ a \cdot b = \left | a \right | \left | b \right | cos \theta $` a,b是兩個向量,`$ \theta $`是a、b的夾角;也就是a在b上的投影長度和b相乘
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看