<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                [TOC] > https://zhuanlan.zhihu.com/p/501798155 ## 概述 示例訓練火的模型 ## 安裝labelimg ``` pip install labelimg // 啟動 labelimg ``` 選訓練的圖片,在選擇 yolo ,訓練好的數據保存到項目中 ![](https://img.kancloud.cn/25/0f/250f9e2a92b2ab7489c84db50aee8b4b_1440x762.png) 生成的格式如下 ``` datasets ├── images ├── train ├── xx.jpg ├── val ├── xx.jpg ├── labels ├── train ├── xx.txt ├── val ├── xx.txt ``` `datasets/fire/labels/train` 的文件內容如下 格式 ``` <object-class> <x> <y> <width> <height> ``` 內容 ``` 0 0.55882 0.77297 0.33824 0.24865 ```` ### 配置 `yolov5/data/fire.yaml` ``` # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: datasets/fire # dataset root dir train: images/train # train images (relative to 'path') val: images/val # val images (relative to 'path') test: # test images (optional) # Classes nc: 1 # number of classes names: ['fire'] # class names ``` 說明 * path:數據集的根目錄 * train:訓練集與path的相對路徑 * val:驗證集與path的相對路徑 * nc:類別數量,因為這個數據集只有一個類別(fire),nc即為1。 * names:類別名字。 ## 下載模型 下載地址: https://github.com/ultralytics/yolov5/releases 根據 以下選擇合適自己的模型,并把下載好的模型放到項目根目錄`/yolov5s-seg.pt` ![](https://img.kancloud.cn/0b/84/0b84069270b2848b8257bdf0d3251b9b_2400x1275.png) ## 開始訓練 ``` # Single-GPU python segment/train.py --model yolov5s-seg.pt --data fire.yaml --workers 1 --batch-size 8 # Multi-GPU DDP python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --model yolov5s-seg.pt --data fire.yaml --epochs 5 --img 640 --device 0,1,2,3 ``` 訓練好的結果會保存在 `runs` 目錄中,`runs/exp/weights` 為訓練好的模型目錄,`best.pt` 為訓練最好的模型,`last.pt`為最后的訓練的模型 把`best.pt` 放到項目目錄下,進行測試,訓練后,會在 `runs/detect/exp2`,得到標注的結果 ``` python detect.py --weights best.pt --source ../datasets/fire/images/val ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看