## 添加索引
為了將數據添加到Elasticsearch,我們需要**索引(index)**——一個存儲關聯數據的地方。實際上,索引只是一個用來指向一個或多個**分片(shards)**的**“邏輯命名空間(logical namespace)”**.
一個**分片(shard)**是一個最小級別**“工作單元(worker unit)”**,它只是保存了索引中所有數據的一部分。在接下來的《深入分片》一章,我們將詳細說明分片的工作原理,但是現在我們只要知道分片就是一個Lucene實例,并且它本身就是一個完整的搜索引擎。我們的文檔存儲在分片中,并且在分片中被索引,但是我們的應用程序不會直接與它們通信,取而代之的是,直接與索引通信。
分片是Elasticsearch在集群中分發數據的關鍵。把分片想象成數據的容器。文檔存儲在分片中,然后分片分配到你集群中的節點上。當你的集群擴容或縮小,Elasticsearch將會自動在你的節點間遷移分片,以使集群保持平衡。
分片可以是**主分片(primary shard)**或者是**復制分片(replica shard)**。你索引中的每個文檔屬于一個單獨的主分片,所以主分片的數量決定了索引最多能存儲多少數據。
> 理論上主分片能存儲的數據大小是沒有限制的,限制取決于你實際的使用情況。分片的最大容量完全取決于你的使用狀況:硬件存儲的大小、文檔的大小和復雜度、如何索引和查詢你的文檔,以及你期望的響應時間。
復制分片只是主分片的一個副本,它可以防止硬件故障導致的數據丟失,同時可以提供讀請求,比如搜索或者從別的shard取回文檔。
當索引創建完成的時候,主分片的數量就固定了,但是復制分片的數量可以隨時調整。
讓我們在集群中唯一一個空節點上創建一個叫做`blogs`的索引。默認情況下,一個索引被分配5個主分片,但是為了演示的目的,我們只分配3個主分片和一個復制分片(每個主分片都有一個復制分片):
```Javascript
PUT /blogs
{
"settings" : {
"number_of_shards" : 3,
"number_of_replicas" : 1
}
}
```
附帶索引的單一節點集群:

我們的集群現在看起來就像上圖——三個主分片都被分配到`Node 1`。如果我們現在檢查**集群健康(cluster-health)**,我們將見到以下信息:
```Javascript
{
"cluster_name": "elasticsearch",
"status": "yellow", <1>
"timed_out": false,
"number_of_nodes": 1,
"number_of_data_nodes": 1,
"active_primary_shards": 3,
"active_shards": 3,
"relocating_shards": 0,
"initializing_shards": 0,
"unassigned_shards": 3 <2>
}
```
- <1> 集群的狀態現在是 `yellow`
- <2> 我們的三個復制分片還沒有被分配到節點上
集群的健康狀態`yellow`表示所有的**主分片(primary shards)**啟動并且正常運行了——集群已經可以正常處理任何請求——但是**復制分片(replica shards)**還沒有全部可用。事實上所有的三個復制分片現在都是`unassigned`狀態——它們還未被分配給節點。在同一個節點上保存相同的數據副本是沒有必要的,如果這個節點故障了,那所有的數據副本也會丟失。
現在我們的集群已經功能完備,但是依舊存在因硬件故障而導致數據丟失的風險。
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion