== Aggregation Test-Drive
We could spend the next few pages defining the various aggregations
and their syntax,((("aggregations", "basic example", id="ix_basicex"))) but aggregations are truly best learned by example.
Once you learn how to think about aggregations, and how to nest them appropriately,
the syntax is fairly trivial.
[NOTE]
=========================
A complete list of aggregation buckets and metrics can be found at the http://bit.ly/1KNL1R3[online
reference documentation]. We'll cover many of them in this chapter, but glance
over it after finishing so you are familiar with the full range of capabilities.
=========================
So let's just dive in and start with an example. We are going to build some
aggregations that might be useful to a car dealer. Our data will be about car
transactions: the car model, manufacturer, sale price, when it sold, and more.
First we will bulk-index some data to work with:
[source,js]
--------------------------------------------------
POST /cars/transactions/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }
--------------------------------------------------
// SENSE: 300_Aggregations/20_basic_example.json
Now that we have some data, let's construct our first aggregation. A car dealer
may want to know which color car sells the best. This is easily accomplished
using a simple aggregation. We will do this using a `terms` bucket:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs" : { <1>
"colors" : { <2>
"terms" : {
"field" : "color" <3>
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/20_basic_example.json
<1> Aggregations are placed under the ((("aggregations", "aggs parameter")))top-level `aggs` parameter (the longer `aggregations`
will also work if you prefer that).
<2> We then name the aggregation whatever we want: `colors`, in this example
<3> Finally, we define a single bucket of type `terms`.
Aggregations are executed in the context of search results,((("searching", "aggregations executed in context of search results"))) which means it is
just another top-level parameter in a search request (for example, using the `/_search`
endpoint). Aggregations can be paired with queries, but we'll tackle that later
in <<_scoping_aggregations>>.
[NOTE]
=========================
You'll notice that we used the `count` <<search-type,search_type>>.((("count search type")))
Because we don't care about search results--the aggregation totals--the
`count` search_type will be faster because it omits the fetch phase.
=========================
Next we define a name for our aggregation. Naming is up to you;
the response will be labeled with the name you provide so that your application
can parse the results later.
Next we define the aggregation itself. For this example, we are defining
a single `terms` bucket.((("buckets", "terms bucket (example)")))((("terms bucket", "defining in example aggregation"))) The `terms` bucket will dynamically create a new
bucket for every unique term it encounters. Since we are telling it to use the
`color` field, the `terms` bucket will dynamically create a new bucket for each color.
Let's execute that aggregation and take a look at the results:
[source,js]
--------------------------------------------------
{
...
"hits": {
"hits": [] <1>
},
"aggregations": {
"colors": { <2>
"buckets": [
{
"key": "red", <3>
"doc_count": 4 <4>
},
{
"key": "blue",
"doc_count": 2
},
{
"key": "green",
"doc_count": 2
}
]
}
}
}
--------------------------------------------------
<1> No search hits are returned because we used the `search_type=count` parameter
<2> Our `colors` aggregation is returned as part of the `aggregations` field.
<3> The `key` to each bucket corresponds to a unique term found in the `color` field.
It also always includes `doc_count`, which tells us the number of docs containing the term.
<4> The count of each bucket represents the number of documents with this color.
The ((("doc_count")))response contains a list of buckets, each corresponding to a unique color
(for example, red or green). Each bucket also includes a count of the number of documents
that "fell into" that particular bucket. For example, there are four red cars.
The preceding example is operating entirely in real time: if the documents are searchable,
they can be aggregated. This means you can take the aggregation results and
pipe them straight into a graphing library to generate real-time dashboards.
As soon as you sell a silver car, your graphs would dynamically update to include
statistics about silver cars.
Voila! Your first aggregation!
((("aggregations", "basic example", startref ="ix_basicex")))
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion