### match匹配怎么當成布爾查詢來使用
到現在為止,你可能已經意識到在一個布爾查詢中多字段`match`查詢僅僅包裹了已經生成的`term`查詢。通過默認的`or`操作符,每個`term`查詢都會像一個`should`子句一樣被添加,只要有一個子句匹配就可以了。下面的兩個查詢是等價的:
```Javacript
{
"match": { "title": "brown fox"}
}
```
```Javascript
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
```
通過`and`操作符,所有的`term`查詢會像`must`子句一樣被添加,因此所有的子句都必須匹配。下面的兩個查詢是等價的:
```Javascript
{
"match": {
"title": {
"query": "brown fox",
"operator": "and"
}
}
}
```
```Javascript
{
"bool": {
"must": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
```
如果`minimum_should_match`參數被指定,`match`查詢就直接被轉換成一個`bool`查詢,下面兩個查詢是等價的:
```Javascript
{
"match": {
"title": {
"query": "quick brown fox",
"minimum_should_match": "75%"
}
}
}
```
```Javascript
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }},
{ "term": { "title": "quick" }}
],
"minimum_should_match": 2 <1>
}
}
```
<1>因為只有三個子句,所以 `minimum_should_match`參數在`match`查詢中的值`75%`就下舍到了`2`。3個`should`子句中至少有兩個子句匹配。
當然,我們通常寫這些查詢類型的時候還是使用`match`查詢的,但是理解`match`查詢在內部是怎么工作的可以讓你在任何你需要使用的時候更加得心應手。有些情況僅僅使用一個`match`查詢是不夠的,比如給某些查詢詞更高的權重。這種情況我們會在下一節看個例子。
<!--
=== How match Uses bool
By now, you have probably realized that <<match-multi-word,multiword `match`
queries>> simply wrap((("match query", "use of bool query in multi-word searches")))((("bool query", "use by match query in multi-word searches")))((("full text search", "how match query uses bool query"))) the generated `term` queries in a `bool` query. With the
default `or` operator, each `term` query is added as a `should` clause, so
at least one clause must match. These two queries are equivalent:
[source,js]
--------------------------------------------------
{
"match": { "title": "brown fox"}
}
--------------------------------------------------
[source,js]
--------------------------------------------------
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
--------------------------------------------------
With the `and` operator, all the `term` queries are added as `must` clauses,
so _all_ clauses must match. These two queries are equivalent:
[source,js]
--------------------------------------------------
{
"match": {
"title": {
"query": "brown fox",
"operator": "and"
}
}
}
--------------------------------------------------
[source,js]
--------------------------------------------------
{
"bool": {
"must": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
--------------------------------------------------
And if the `minimum_should_match` parameter is((("minimum_should_match parameter", "match query using bool query"))) specified, it is passed
directly through to the `bool` query, making these two queries equivalent:
[source,js]
--------------------------------------------------
{
"match": {
"title": {
"query": "quick brown fox",
"minimum_should_match": "75%"
}
}
}
--------------------------------------------------
[source,js]
--------------------------------------------------
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }},
{ "term": { "title": "quick" }}
],
"minimum_should_match": 2 <1>
}
}
--------------------------------------------------
<1> Because there are only three clauses, the `minimum_should_match`
value of `75%` in the `match` query is rounded down to `2`.
At least two out of the three `should` clauses must match.
Of course, we would normally write these types of queries by using the `match`
query, but understanding how the `match` query works internally lets you take
control of the process when you need to. Some things can't be
done with a single `match` query, such as give more weight to some query terms
than to others. We will look at an example of this in the next section.
-->
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion