[[aggregations-and-analysis]]
=== Aggregations and Analysis
Some aggregations, such as the `terms` bucket, operate((("analysis", "aggregations and")))((("aggregations", "and analysis"))) on string fields. And
string fields may be either `analyzed` or `not_analyzed`, which begs the question:
how does analysis affect aggregations?((("strings", "analyzed or not_analyzed string fields")))((("not_analyzed fields")))((("analyzed fields")))
The answer is "a lot," but it is best shown through an example. First, index
some documents representing various states in the US:
[source,js]
----
POST /agg_analysis/data/_bulk
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New Jersey" }
{ "index": {}}
{ "state" : "New Mexico" }
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New York" }
----
We want to build a list of unique states in our dataset, complete with counts.
Simple--let's use a `terms` bucket:
[source,js]
----
GET /agg_analysis/data/_search?search_type=count
{
"aggs" : {
"states" : {
"terms" : {
"field" : "state"
}
}
}
}
----
This gives us these results:
[source,js]
----
{
...
"aggregations": {
"states": {
"buckets": [
{
"key": "new",
"doc_count": 5
},
{
"key": "york",
"doc_count": 3
},
{
"key": "jersey",
"doc_count": 1
},
{
"key": "mexico",
"doc_count": 1
}
]
}
}
}
----
Oh dear, that's not at all what we want! Instead of counting states, the aggregation
is counting individual words. The underlying reason is simple: aggregations
are built from the inverted index, and the inverted index is _post-analysis_.
When we added those documents to Elasticsearch, the string `"New York"` was
analyzed/tokenized into `["new", "york"]`. These individual tokens were then
used to populate fielddata, and ultimately we see counts for `new` instead of
`New York`.
This is obviously not the behavior that we wanted, but luckily it is easily
corrected.
We need to define a multifield for +state+ and set it to `not_analyzed`. This
will prevent `New York` from being analyzed, which means it will stay a single
token in the aggregation. Let's try the whole process over, but this time
specify a _raw_ multifield:
[source,js]
----
DELETE /agg_analysis/
PUT /agg_analysis
{
"mappings": {
"data": {
"properties": {
"state" : {
"type": "string",
"fields": {
"raw" : {
"type": "string",
"index": "not_analyzed"<1>
}
}
}
}
}
}
}
POST /agg_analysis/data/_bulk
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New Jersey" }
{ "index": {}}
{ "state" : "New Mexico" }
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New York" }
GET /agg_analysis/data/_search?search_type=count
{
"aggs" : {
"states" : {
"terms" : {
"field" : "state.raw" <2>
}
}
}
}
----
<1> This time we explicitly map the +state+ field and include a `not_analyzed` sub-field.
<2> The aggregation is run on +state.raw+ instead of +state+.
Now when we run our aggregation, we get results that make sense:
[source,js]
----
{
...
"aggregations": {
"states": {
"buckets": [
{
"key": "New York",
"doc_count": 3
},
{
"key": "New Jersey",
"doc_count": 1
},
{
"key": "New Mexico",
"doc_count": 1
}
]
}
}
}
----
In practice, this kind of problem is easy to spot. Your aggregations
will simply return strange buckets, and you'll remember the analysis issue.
It is a generalization, but there are not many instances where you want to use
an analyzed field in an aggregation. When in doubt, add a multifield so
you have the option for both.((("analyzed fields", "aggregations and")))
==== High-Cardinality Memory Implications
There is another reason to avoid aggregating analyzed fields: high-cardinality
fields consume a large amount of memory when loaded into fielddata.((("memory usage", "high-cardinality fields")))((("cardinality", "high-cardinality fields, memory use issues"))) The
analysis process often (although not always) generates a large number of tokens,
many of which are unique. This increases the overall cardinality of the field
and contributes to more memory pressure.((("analysis", "high-cardinality fields, memory use issues")))
Some types of analysis are _extremely_ unfriendly with regards to memory.
Consider an n-gram analysis process.((("n-grams", "memory use issues associated with"))) The term +New York+ might be n-grammed into
the following tokens:
- `ne`
- `ew`
- +w{nbsp}+
- +{nbsp}y+
- `yo`
- `or`
- `rk`
You can imagine how the n-gramming process creates a huge number of unique tokens,
especially when analyzing paragraphs of text. When these are loaded into memory,
you can easily exhaust your heap space.
So, before aggregating across fields, take a second to verify that the fields are
`not_analyzed`. And if you want to aggregate analyzed fields, ensure that the analysis
process is not creating an obscene number of tokens.
[TIP]
==================================================
At the end of the day, it doesn't matter whether a field is `analyzed` or
`not_analyzed`. The more unique values in a field--the higher the
cardinality of the field--the more memory that is required. This is
especially true for string fields, where every unique string must be held in
memory--longer strings use more memory.
==================================================
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion