[[stemming-in-situ]]
=== Stemming in situ
For the sake of completeness, we will ((("stemming words", "stemming in situ")))finish this chapter by explaining how to
index stemmed words into the same field as unstemmed words. As an example,
analyzing the sentence _The quick foxes jumped_ would produce the following
terms:
[source,text]
------------------------------------
Pos 1: (the)
Pos 2: (quick)
Pos 3: (foxes,fox) <1>
Pos 4: (jumped,jump) <1>
------------------------------------
<1> The stemmed and unstemmed forms occupy the same position.
WARNING: Read <<stemming-in-situ-good-idea>> before using this approach.
To achieve stemming _in situ_, we will use the
http://bit.ly/1ynIBCe[`keyword_repeat`]
token filter,((("keyword_repeat token filter"))) which, like the `keyword_marker` token filter (see
<<preventing-stemming>>), marks each term as a keyword to prevent the subsequent
stemmer from touching it. However, it also repeats the term in the same
position, and this repeated term *is* stemmed.
Using the `keyword_repeat` token filter alone would result in the following:
[source,text]
------------------------------------
Pos 1: (the,the) <1>
Pos 2: (quick,quick) <1>
Pos 3: (foxes,fox)
Pos 4: (jumped,jump)
------------------------------------
<1> The stemmed and unstemmed forms are the same, and so are repeated
needlessly.
To prevent the useless repetition of terms that are the same in their stemmed
and unstemmed forms, we add the
http://bit.ly/1B6xHUY[`unique`] token filter((("unique token filter"))) into the mix:
[source,json]
------------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"filter": {
"unique_stem": {
"type": "unique",
"only_on_same_position": true <1>
}
},
"analyzer": {
"in_situ": {
"tokenizer": "standard",
"filter": [
"lowercase",
"keyword_repeat", <2>
"porter_stem",
"unique_stem" <3>
]
}
}
}
}
}
------------------------------------
<1> The `unique` token filter is set to remove duplicate tokens
only when they occur in the same position.
<2> The `keyword_repeat` token filter must appear before the
stemmer.
<3> The `unique_stem` filter removes duplicate terms after the
stemmer has done its work.
[[stemming-in-situ-good-idea]]
==== Is Stemming in situ a Good Idea
People like the ((("stemming words", "stemming in situ", "good idea, or not")))idea of stemming _in situ_: ``Why use an unstemmed field
_and_ a stemmed field if I can just use one combined field?'' But is it a
good idea? The answer is almost always no. There are two problems.
The first is the inability to separate exact matches from inexact matches. In
this chapter, we have seen that words with different meanings are often
conflated to the same stem word: `organs` and `organization` both stem to
`organ`.
In <<using-language-analyzers>>, we demonstrated how to combine a query on a
stemmed field (to increase recall) with a query on an unstemmed field (to
improve relevance).((("language analyzers", "combining query on stemmed and unstemmed field"))) When the stemmed and unstemmed fields are separate, the
contribution of each field can be tuned by boosting one field over another
(see <<prioritising-clauses>>). If, instead, the stemmed and unstemmed forms
appear in the same field, there is no way to tune your search results.
The second issue has to do with how the ((("relevance scores", "stemming in situ and")))relevance score is calculated. In
<<relevance-intro>>, we explained that part of the calculation depends on the
_inverse document frequency_ -- how often a word appears in all the documents
in our index.((("inverse document frequency", "stemming in situ and"))) Using in situ stemming for a document that contains the text
`jump jumped jumps` would result in these terms:
[source,text]
------------------------------------
Pos 1: (jump)
Pos 2: (jumped,jump)
Pos 3: (jumps,jump)
------------------------------------
While `jumped` and `jumps` appear once each and so would have the correct IDF,
`jump` appears three times, greatly reducing its value as a search term in
comparison with the unstemmed forms.
For these reasons, we recommend against using stemming in situ.
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion