#### 跨字段實體搜索(Cross-fields Entity Search)
現在讓我們看看一個常見的模式:跨字段實體搜索。類似person,product或者address這樣的實體,它們的信息會分散到多個字段中。我們或許有一個person實體被索引如下:
```Javascript
{
"firstname": "Peter",
"lastname": "Smith"
}
```
而address實體則是像下面這樣:
```Javascript
{
"street": "5 Poland Street",
"city": "London",
"country": "United Kingdom",
"postcode": "W1V 3DG"
}
```
這個例子也許很像在[多查詢字符串](../110_Multi_Field_Search/05_Multiple_query_strings.md)中描述的,但是有一個顯著的區別。在多查詢字符串中,我們對每個字段都使用了不同的查詢字符串。在這個例子中,我們希望使用一個查詢字符串來搜索多個字段。
用戶也許會搜索名為"Peter Smith"的人,或者名為"Poland Street W1V"的地址。每個查詢的單詞都出現在不同的字段中,因此使用dis_max/best_fields查詢來搜索單個最佳匹配字段顯然是不對的。
#### 一個簡單的方法
實際上,我們想要依次查詢每個字段然后將每個匹配字段的分值進行累加,這聽起來很像bool查詢能夠勝任的工作:
```Javascript
{
"query": {
"bool": {
"should": [
{ "match": { "street": "Poland Street W1V" }},
{ "match": { "city": "Poland Street W1V" }},
{ "match": { "country": "Poland Street W1V" }},
{ "match": { "postcode": "Poland Street W1V" }}
]
}
}
}
```
對每個字段重復查詢字符串很快就會顯得冗長。我們可以使用multi_match查詢進行替代,然后將type設置為most_fields來讓它將所有匹配字段的分值合并:
```Javascript
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
```
#### 使用most_fields存在的問題
使用most_fields方法執行實體查詢有一些不那么明顯的問題:
* 它被設計用來找到匹配任意單詞的多數字段,而不是找到跨越所有字段的最匹配的單詞。
* 它不能使用operator或者minimum_should_match參數來減少低相關度結果帶來的長尾效應。
* 每個字段的詞條頻度是不同的,會互相干擾最終得到較差的排序結果。
<!--
=== Cross-fields Entity Search
Now we come to a common pattern: cross-fields entity search. ((("cross-fields entity search")))((("multifield search", "cross-fields entity search"))) With entities
like `person`, `product`, or `address`, the identifying information is spread
across several fields. We may have a `person` indexed as follows:
[source,js]
--------------------------------------------------
{
"firstname": "Peter",
"lastname": "Smith"
}
--------------------------------------------------
Or an address like this:
[source,js]
--------------------------------------------------
{
"street": "5 Poland Street",
"city": "London",
"country": "United Kingdom",
"postcode": "W1V 3DG"
}
--------------------------------------------------
This sounds a lot like the example we described in <<multi-query-strings>>,
but there is a big difference between these two scenarios. In
<<multi-query-strings>>, we used a separate query string for each field. In
this scenario, we want to search across multiple fields with a _single_ query
string.
Our user might search for the person ``Peter Smith'' or for the address
``Poland Street W1V.'' Each of those words appears in a different field, so
using a `dis_max` / `best_fields` query to find the _single_ best-matching
field is clearly the wrong approach.
==== A Naive Approach
Really, we want to query each field in turn and add up the scores of every
field that matches, which sounds like a job for the `bool` query:
[source,js]
--------------------------------------------------
{
"query": {
"bool": {
"should": [
{ "match": { "street": "Poland Street W1V" }},
{ "match": { "city": "Poland Street W1V" }},
{ "match": { "country": "Poland Street W1V" }},
{ "match": { "postcode": "Poland Street W1V" }}
]
}
}
}
--------------------------------------------------
Repeating the query string for every field soon becomes tedious. We can use
the `multi_match` query instead, ((("most fields queries", "problems for entity search")))((("multi_match queries", "most_fields type")))and set the `type` to `most_fields` to tell it to
combine the scores of all matching fields:
[source,js]
--------------------------------------------------
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
--------------------------------------------------
==== Problems with the most_fields Approach
The `most_fields` approach to entity search has some problems that are not
immediately obvious:
* It is designed to find the most fields matching _any_ words, rather than to
find the most matching words _across all fields_.
* It can't use the `operator` or `minimum_should_match` parameters
to reduce the long tail of less-relevant results.
* Term frequencies are different in each field and could interfere with each
other to produce badly ordered results.
-->
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion