[[common-terms]]
=== Divide and Conquer
The terms in a query string can be divided into more-important (low-frequency)
and less-important (high-frequency) terms.((("stopwords", "low and high frequency terms"))) Documents that match only the less
important terms are probably of very little interest. Really, we want
documents that match as many of the more important terms as possible.
The `match` query accepts ((("cutoff_frequency parameter")))((("match query", "cutoff_frequency parameter")))a `cutoff_frequency` parameter, which allows it to
divide the terms in the query string into a low-frequency and high-frequency
group.((("term frequency", "cutoff_frequency parameter in match query"))) The low-frequency group (more-important terms) form the bulk of the
query, while the high-frequency group (less-important terms) is used only for
scoring, not for matching. By treating these two groups differently, we can
gain a real boost of speed on previously slow queries.
.Domain-Specific Stopwords
*********************************************
One of the benefits of `cutoff_frequency` is that you get _domain-specific_
stopwords for free.((("domain specific stopwords")))((("stopwords", "domain specific"))) For instance, a website about movies may use the words
_movie_, _color_, _black_, and _white_ so often that they could be
considered almost meaningless. With the `stop` token filter, these domain-specific terms would have to be added to the stopwords list manually. However,
because the `cutoff_frequency` looks at the actual frequency of terms in the
index, these words would be classified as _high frequency_ automatically.
*********************************************
Take this query as an example:
[source,json]
---------------------------------
{
"match": {
"text": {
"query": "Quick and the dead",
"cutoff_frequency": 0.01 <1>
}
}
---------------------------------
<1> Any term that occurs in more than 1% of documents is considered to be high
frequency. The `cutoff_frequency` can be specified as a fraction (`0.01`)
or as an absolute number (`5`).
This query uses the `cutoff_frequency` to first divide the query terms into a
low-frequency group (`quick`, `dead`) and a high-frequency group (`and`,
`the`). Then, the query is rewritten to produce the following `bool` query:
[source,json]
---------------------------------
{
"bool": {
"must": { <1>
"bool": {
"should": [
{ "term": { "text": "quick" }},
{ "term": { "text": "dead" }}
]
}
},
"should": { <2>
"bool": {
"should": [
{ "term": { "text": "and" }},
{ "term": { "text": "the" }}
]
}
}
}
}
---------------------------------
<1> At least one low-frequency/high-importance term _must_ match.
<2> High-frequency/low-importance terms are entirely optional.
The `must` clause means that at least one of the low-frequency terms—`quick` or `dead`—_must_ be present for a document to be considered a
match. All other documents are excluded. The `should` clause then looks for
the high-frequency terms `and` and `the`, but only in the documents collected
by the `must` clause. The sole job of the `should` clause is to score a
document like ``Quick _and the_ dead'' higher than ``_The_ quick but
dead''. This approach greatly reduces the number of documents that need to be
examined and scored.
[TIP]
==================================================
Setting the operator parameter to `and` would make _all_ low-frequency terms
required, and score documents that contain _all_ high-frequency terms higher.
However, matching documents would not be required to contain all high-frequency terms. If you would prefer all low- and high-frequency terms to be
required, you should use a `bool` query instead. As we saw in
<<stopwords-and>>, this is already an efficient query.
==================================================
==== Controlling Precision
The `minimum_should_match` parameter can be combined with `cutoff_frequency`
but it applies to only the low-frequency terms.((("stopwords", "low and high frequency terms", "controlling precision")))((("minimum_should_match parameter", "controlling precision"))) This query:
[source,json]
---------------------------------
{
"match": {
"text": {
"query": "Quick and the dead",
"cutoff_frequency": 0.01,
"minimum_should_match": "75%"
}
}
---------------------------------
would be rewritten as follows:
[source,json]
---------------------------------
{
"bool": {
"must": {
"bool": {
"should": [
{ "term": { "text": "quick" }},
{ "term": { "text": "dead" }}
],
"minimum_should_match": 1 <1>
}
},
"should": { <2>
"bool": {
"should": [
{ "term": { "text": "and" }},
{ "term": { "text": "the" }}
]
}
}
}
}
---------------------------------
<1> Because there are only two terms, the original 75% is rounded down
to `1`, that is: _one out of two low-terms must match_.
<2> The high-frequency terms are still optional and used only for scoring.
==== Only High-Frequency Terms
An `or` query for high-frequency((("stopwords", "low and high frequency terms", "only high frequency terms"))) terms only—``To be, or not to be''—is
the worst case for performance. It is pointless to score _all_ the
documents that contain only one of these terms in order to return just the top
10 matches. We are really interested only in documents in which the terms all occur
together, so in the case where there are no low-frequency terms, the query is
rewritten to make all high-frequency terms required:
[source,json]
---------------------------------
{
"bool": {
"must": [
{ "term": { "text": "to" }},
{ "term": { "text": "be" }},
{ "term": { "text": "or" }},
{ "term": { "text": "not" }},
{ "term": { "text": "to" }},
{ "term": { "text": "be" }}
]
}
}
---------------------------------
==== More Control with Common Terms
While the high/low frequency functionality in the `match` query is useful,
sometimes you want more control((("stopwords", "low and high frequency terms", "more control over common terms"))) over how the high- and low-frequency groups
should be handled. The `match` query exposes a subset of the
functionality available in the `common` terms query.((("common terms query")))
For instance, we could make all low-frequency terms required, and score only
documents that have 75% of all high-frequency terms with a query like this:
[source,json]
---------------------------------
{
"common": {
"text": {
"query": "Quick and the dead",
"cutoff_frequency": 0.01,
"low_freq_operator": "and",
"minimum_should_match": {
"high_freq": "75%"
}
}
}
}
---------------------------------
See the http://bit.ly/1wdS2Qo[`common` terms query] reference page for more options.
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion