### 匹配查詢
不管你搜索什么內容,`match`查詢是你首先需要接觸的查詢。它是一個高級查詢,意味著`match`查詢知道如何更好的處理全文檢索和準確值檢索。
這也就是說,`match`查詢的一個主要用途是進行全文搜索。讓我們通過一個小例子來看一下全文搜索是如何工作的。
#### 索引一些數據
首先,我們使用`bulk` API來創建和索引一些文檔:
```json
DELETE /my_index <1>
PUT /my_index
{ "settings": { "number_of_shards": 1 }} <2>
POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "title": "The quick brown fox" }
{ "index": { "_id": 2 }}
{ "title": "The quick brown fox jumps over the lazy dog" }
{ "index": { "_id": 3 }}
{ "title": "The quick brown fox jumps over the quick dog" }
{ "index": { "_id": 4 }}
{ "title": "Brown fox brown dog" }
```
// SENSE: 100_Full_Text_Search/05_Match_query.json
<1> 刪除已經存在的索引(如果索引存在)
<2> 然后,`關聯失效`這一節解釋了為什么我們創建該索引的時候只使用一個主分片。
#### 單詞查詢
第一個例子解釋了當使用`match`查詢進行單詞全文搜索時發生了什么:
```json
GET /my_index/my_type/_search
{
"query": {
"match": {
"title": "QUICK!"
}
}
}
```
// SENSE: 100_Full_Text_Search/05_Match_query.json
Elasticsearch通過下面的步驟執行`match`查詢:
1. _檢查field類型_
`title`字段是一個字符串(`analyzed`),所以該查詢字符串也需要被分析(`analyzed`)
2. _分析查詢字符串_
查詢詞`QUICK!`經過標準分析器的分析后變成單詞`quick`。因為我們只有一個查詢詞,因此`match`查詢可以以一種低級別`term`查詢的方式執行。
3. _找到匹配的文檔_
`term`查詢在倒排索引中搜索`quick`,并且返回包含該詞的文檔。在這個例子中,返回的文檔是1,2,3。
4. _為每個文檔打分_
`term`查詢綜合考慮詞頻(每篇文檔`title`字段包含`quick`的次數)、逆文檔頻率(在全部文檔中`title`字段包含`quick`的次數)、包含`quick`的字段長度(長度越短越相關)來計算每篇文檔的相關性得分`_score`。(更多請見相關性介紹)
這個過程之后我們將得到以下結果(簡化后):
```json
"hits": [
{
"_id": "1",
"_score": 0.5, <1>
"_source": {
"title": "The quick brown fox"
}
},
{
"_id": "3",
"_score": 0.44194174, <2>
"_source": {
"title": "The quick brown fox jumps over the quick dog"
}
},
{
"_id": "2",
"_score": 0.3125, <2>
"_source": {
"title": "The quick brown fox jumps over the lazy dog"
}
}
]
```
<1> 文檔1最相關,因為 `title` 最短,意味著`quick`在語義中起比較大的作用。
<2> 文檔3比文檔2更相關,因為在文檔3中`quick`出現了兩次。
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion