[[cardinality]]
=== Finding Distinct Counts
The first approximate aggregation provided by Elasticsearch is the `cardinality`
metric.((("cardinality", "finding distinct counts")))((("aggregations", "approximate", "cardinality")))((("approximate algorithms", "cardinality")))((("distinct counts"))) This provides the cardinality of a field, also called a _distinct_ or
_unique_ count. ((("unique counts"))) You may be familiar with the SQL version:
[source, sql]
--------
SELECT DISTINCT(color)
FROM cars
--------
Distinct counts are a common operation, and answer many fundamental business questions:
- How many unique visitors have come to my website?
- How many unique cars have we sold?
- How many distinct users purchased a product each month?
We can use the `cardinality` metric to determine the number of car colors being
sold at our dealership:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs" : {
"distinct_colors" : {
"cardinality" : {
"field" : "color"
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/60_cardinality.json
This returns a minimal response showing that we have sold three different-colored
cars:
[source,js]
--------------------------------------------------
...
"aggregations": {
"distinct_colors": {
"value": 3
}
}
...
--------------------------------------------------
We can make our example more useful: how many colors were sold each month? For
that metric, we just nest the `cardinality` metric under ((("date histograms, building")))a `date_histogram`:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs" : {
"months" : {
"date_histogram": {
"field": "sold",
"interval": "month"
},
"aggs": {
"distinct_colors" : {
"cardinality" : {
"field" : "color"
}
}
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/60_cardinality.json
==== Understanding the Trade-offs
As mentioned at the top of this chapter, the `cardinality` metric is an approximate
algorithm. ((("cardinality", "understanding the tradeoffs"))) It is based on the http://bit.ly/1u6UWwd[HyperLogLog++] (HLL) algorithm.((("HLL (HyperLogLog) algorithm")))((("HyperLogLog (HLL) algorithm"))) HLL works by
hashing your input and using the bits from the hash to make probabilistic estimations
on the cardinality.
You don't need to understand the technical details (although if you're interested,
the paper is a great read!), but you ((("memory usage", "cardinality metric")))should be aware of the _properties_ of the
algorithm:
- Configurable precision, which controls memory usage (more precise
== more memory).
- Excellent accuracy on low-cardinality sets.
- Fixed memory usage. Whether there are thousands or billions of unique
values, memory usage depends on only the configured precision.
To configure the precision, you must specify the `precision_threshold` parameter.((("precision_threshold parameter (cardinality metric)")))
This threshold defines the point under which cardinalities are expected to be very
close to accurate. Consider this example:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs" : {
"distinct_colors" : {
"cardinality" : {
"field" : "color",
"precision_threshold" : 100 <1>
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/60_cardinality.json
<1> `precision_threshold` accepts a number from 0–40,000. Larger values
are treated as equivalent to 40,000.
This example will ensure that fields with 100 or fewer distinct values will be extremely accurate.
Although not guaranteed by the algorithm, if a cardinality is under the threshold,
it is almost always 100% accurate. Cardinalities above this will begin to trade
accuracy for memory savings, and a little error will creep into the metric.
For a given threshold, the HLL data-structure will use about
`precision_threshold * 8` bytes of memory. So you must balance how much memory
you are willing to sacrifice for additional accuracy.
Practically speaking, a threshold of `100` maintains an error under 5% even when
counting millions of unique values.
==== Optimizing for Speed
If you want a distinct count, you _usually_ want to query your entire dataset
(or nearly all of it). ((("cardinality", "optimizing for speed")))((("distinct counts", "optimizing for speed"))) Any operation on all your data needs to execute quickly,
for obvious reasons. HyperLogLog is very fast already--it simply
hashes your data and does some bit-twiddling.((("HyperLogLog (HLL) algorithm")))((("HLL (HyperLogLog) algorithm")))
But if speed is important to you, we can optimize it a little bit further.
Since HLL simply needs the hash of the field, we can precompute that hash at
index time.((("hashes, pre-computing for cardinality metric"))) When the query executes, we can skip the hash computation and load
the value directly out of fielddata.
[NOTE]
=========================
Precomputing hashes is useful only on very large and/or high-cardinality
fields. Calculating the hash on these fields is non-negligible at query time.
However, numeric fields hash very quickly, and storing the original numeric often
requires the same (or less) memory. This is also true on low-cardinality string
fields; there are internal optimizations that guarantee that hashes are
calculated only once per unique value.
Basically, precomputing hashes is not guaranteed to make all fields faster --
only those that have high cardinality and/or large strings. And remember,
precomputing simply shifts the cost to index time. You still pay the price;
you just choose _when_ to pay it.
=========================
To do this, we need to add a new multifield to our data. We'll delete our index,
add a new mapping that includes the hashed field, and then reindex:
[source,js]
----
DELETE /cars/
PUT /cars/
{
"mappings": {
"color": {
"type": "string",
"fields": {
"hash": {
"type": "murmur3" <1>
}
}
}
}
}
POST /cars/transactions/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }
----
// SENSE: 300_Aggregations/60_cardinality.json
<1> This multifield is of type `murmur3`, which is a hashing function.
Now when we run an aggregation, we use the `color.hash` field instead of the
`color` field:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs" : {
"distinct_colors" : {
"cardinality" : {
"field" : "color.hash" <1>
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/60_cardinality.json
<1> Notice that we specify the hashed multifield, rather than the original.
Now the `cardinality` metric will load the values (the precomputed hashes)
from `"color.hash"` and use those in place of dynamically hashing the original
value.
The savings per document is small, but if hashing each field adds 10 nanoseconds and your aggregation touches 100 million documents, that adds 1 second per
query. If you find yourself using `cardinality` across many documents,
perform some profiling to see if precomputing hashes makes sense for your
deployment.
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion