<!--秀川譯-->
###提高查詢得分
當然,`bool`查詢并不僅僅是組合多個簡單的一個詞的`match`查詢。他可以組合任何其他查詢,包括`bool`查詢。`bool`查詢通常會通過組合幾個不同查詢的得分為每個文檔調整相關性得分。
假設我們想查找關于"full-text search"的文檔,但是我們又想給涉及到“Elasticsearch”或者“Lucene”的文檔更高的權重。我們的用意是想涉及到"Elasticsearch" 或者 "Lucene"的文檔的相關性得分會比那些沒有涉及到的文檔的得分要高,也就是說這些文檔會出現在結果集更靠前的位置。
一個簡單的`bool`查詢允許我們寫出像下面一樣的非常復雜的邏輯:
```javascript
GET /_search
{
"query": {
"bool": {
"must": {
"match": {
"content": { (1)
"query": "full text search",
"operator": "and"
}
}
},
"should": [ (2)
{ "match": { "content": "Elasticsearch" }},
{ "match": { "content": "Lucene" }}
]
}
}
}
```
1. `content`字段必須包含`full`,`text`,`search`這三個單詞。
2. 如果`content`字段也包含了“Elasticsearch”或者“Lucene”,則文檔會有一個更高的得分。
匹配的`should`子句越多,文檔的相關性就越強。到目前為止一切都很好。但是如果我們想給包含“Lucene”一詞的文檔比較高的得分,甚至給包含“Elasticsearch”一詞更高的得分要怎么做呢?
我們可以在任何查詢子句中指定一個`boost`值來控制相對權重,默認值為1。一個大于1的`boost`值可以提高查詢子句的相對權重。因此我們可以像下面一樣重寫之前的查詢:
```javascript
GET /_search
{
"query": {
"bool": {
"must": {
"match": { (1)
"content": {
"query": "full text search",
"operator": "and"
}
}
},
"should": [
{ "match": {
"content": {
"query": "Elasticsearch",
"boost": 3 (2)
}
}},
{ "match": {
"content": {
"query": "Lucene",
"boost": 2 (3)
}
}}
]
}
}
}
```
1. 這些查詢子句的`boost`值為默認值`1`。
2. 這個子句是最重要的,因為他有最高的`boost`值。
3. 這個子句比第一個查詢子句的要重要,但是沒有“Elasticsearch”子句重要。
> 注意:
>
> 1. `boost`參數用于提高子句的相對權重(`boost`值大于`1`)或者降低子句的相對權重(`boost`值在`0`-`1`之間),但是提高和降低并非是線性的。換句話說,`boost`值為2并不能夠使結果變成兩部的得分。
>
> 2. 另外,`boost`值被使用了以后新的得分是標準的。每個查詢類型都會有一個獨有的標準算法,算法的詳細內容并不在本書的范疇。簡單的概括一下,一個更大的`boost`值可以得到一個更高的得分。
>
> 3. 如果你自己實現了沒有基于TF/IDF的得分模型,但是你想得到更多的對于提高得分過程的控制,你可以使用`function_score`查詢來調整一個文檔的boost值而不用通過標準的步驟。
我們會在下一章介紹更多的組合查詢,[【multi-field-search】](https://github.com/looly/elasticsearch-definitive-guide-cn/tree/master/110_Multi_Field_Search)。但是首先讓我們一起來看一下查詢的另外一個重要的特征:文本分析。
<!--
=== Boosting Query Clauses
Of course, the `bool` query isn't restricted ((("full text search", "boosting query clauses")))to combining simple one-word
`match` queries. It can combine any other query, including other `bool`
queries.((("relevance scores", "controlling weight of query clauses"))) It is commonly used to fine-tune the relevance `_score` for each
document by combining the scores from several distinct queries.
Imagine that we want to search for documents((("bool query", "boosting weight of query clauses")))((("weight", "controlling for query clauses"))) about "full-text search," but we
want to give more _weight_ to documents that also mention "Elasticsearch" or
"Lucene." By _more weight_, we mean that documents mentioning
"Elasticsearch" or "Lucene" will receive a higher relevance `_score` than
those that don't, which means that they will appear higher in the list of
results.
A simple `bool` _query_ allows us to write this fairly complex logic as follows:
[source,js]
--------------------------------------------------
GET /_search
{
"query": {
"bool": {
"must": {
"match": {
"content": { <1>
"query": "full text search",
"operator": "and"
}
}
},
"should": [ <2>
{ "match": { "content": "Elasticsearch" }},
{ "match": { "content": "Lucene" }}
]
}
}
}
--------------------------------------------------
// SENSE: 100_Full_Text_Search/25_Boost.json
<1> The `content` field must contain all of the words `full`, `text`, and `search`.
<2> If the `content` field also contains `Elasticsearch` or `Lucene`,
the document will receive a higher `_score`.
The more `should` clauses that match, the more relevant the document. So far,
so good.
But what if we want to give more weight to the docs that contain `Lucene` and
even more weight to the docs containing `Elasticsearch`?
We can control ((("boost parameter")))the relative weight of any query clause by specifying a `boost`
value, which defaults to `1`. A `boost` value greater than `1` increases the
relative weight of that clause. So we could rewrite the preceding query as
follows:
[source,js]
--------------------------------------------------
GET /_search
{
"query": {
"bool": {
"must": {
"match": { <1>
"content": {
"query": "full text search",
"operator": "and"
}
}
},
"should": [
{ "match": {
"content": {
"query": "Elasticsearch",
"boost": 3 <2>
}
}},
{ "match": {
"content": {
"query": "Lucene",
"boost": 2 <3>
}
}}
]
}
}
}
--------------------------------------------------
// SENSE: 100_Full_Text_Search/25_Boost.json
<1> These clauses use the default `boost` of `1`.
<2> This clause is the most important, as it has the highest `boost`.
<3> This clause is more important than the default, but not as important
as the `Elasticsearch` clause.
[NOTE]
[[boost-normalization]]
====
The `boost` parameter is used to increase((("boost parameter", "score normalied after boost applied"))) the relative weight of a clause
(with a `boost` greater than `1`) or decrease the relative weight (with a
`boost` between `0` and `1`), but the increase or decrease is not linear. In
other words, a `boost` of `2` does not result in double the `_score`.
Instead, the new `_score` is _normalized_ after((("normalization", "score normalied after boost applied"))) the boost is applied. Each
type of query has its own normalization algorithm, and the details are beyond
the scope of this book. Suffice to say that a higher `boost` value results in
a higher `_score`.
If you are implementing your own scoring model not based on TF/IDF and you
need more control over the boosting process, you can use the
<<function-score-query,`function_score` query>> to((("function_score query"))) manipulate a document's
boost without the normalization step.
====
We present other ways of combining queries in the next chapter,
<<multi-field-search>>. But first, let's take a look at the other important
feature of queries: text analysis.
-->
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion