#### 以字段為中心的查詢(Field-centric Queries)
上述提到的三個問題都來源于most_fields是以字段為中心(Field-centric),而不是以詞條為中心(Term-centric):它會查詢最多匹配的字段(Most matching fields),而我們真正感興趣的最匹配的詞條(Most matching terms)。
> 提示:best_fields同樣是以字段為中心的,因此它也存在相似的問題。
首先我們來看看為什么存在這些問題,以及如何解決它們。
##### 問題1:在多個字段中匹配相同的單詞
考慮一下most_fields查詢是如何執行的:ES會為每個字段生成一個match查詢,然后將它們包含在一個bool查詢中。
我們可以將查詢傳入到validate-query API中進行查看:
```Javascript
GET /_validate/query?explain
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
```
// SENSE: 110_Multi_Field_Search/40_Entity_search_problems.json
它會產生下面的解釋(explaination):
(street:poland street:street street:w1v)
(city:poland city:street city:w1v)
(country:poland country:street country:w1v)
(postcode:poland postcode:street postcode:w1v)
你可以發現能夠在兩個字段中匹配poland的文檔會比在一個字段中匹配了poland和street的文檔的分值要高。
##### 問題2:減少長尾
在[精度控制(Controlling Precision)](../100_Full_Text_Search/15_Combining_queries.md)一節中,我們討論了如何使用and操作符和minimum_should_match參數來減少相關度低的文檔數量:
```Javascript
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"operator": "and", <1>
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
```
// SENSE: 110_Multi_Field_Search/40_Entity_search_problems.json
<1> 所有的term必須存在。
但是,使用best_fields或者most_fields,這些參數會被傳遞到生成的match查詢中。該查詢的解釋如下(譯注:通過validate-query API):
(+street:poland +street:street +street:w1v)
(+city:poland +city:street +city:w1v)
(+country:poland +country:street +country:w1v)
(+postcode:poland +postcode:street +postcode:w1v)
換言之,使用and操作符時,所有的單詞都需要出現在相同的字段中,這顯然是錯的!這樣做可能不會有任何匹配的文檔。
##### 問題3:詞條頻度
在[什么是相關度(What is Relevance(relevance-intro))](https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html)一節中,我們解釋了默認用來計算每個詞條的相關度分值的相似度算法TF/IDF:
* 詞條頻度(Term Frequency)::
在一份文檔中,一個詞條在一個字段中出現的越頻繁,文檔的相關度就越高。
* 倒排文檔頻度(Inverse Document Frequency)::
一個詞條在索引的所有文檔的字段中出現的越頻繁,詞條的相關度就越低。
當通過多字段進行搜索時,TF/IDF會產生一些令人驚訝的結果。
考慮使用first_name和last_name字段搜索"Peter Smith"的例子。Peter是一個常見的名字,Smith是一個常見的姓氏 - 它們的IDF都較低。但是如果在索引中有另外一個名為Smith Williams的人呢?Smith作為名字是非常罕見的,因此它的IDF值會很高!
像下面這樣的一個簡單查詢會將Smith Williams放在Peter Smith前面(譯注:含有Smith Williams的文檔分值比含有Peter Smith的文檔分值高),盡管Peter Smith明顯是更好的匹配:
```Javascript
{
"query": {
"multi_match": {
"query": "Peter Smith",
"type": "most_fields",
"fields": [ "*_name" ]
}
}
}
```
// SENSE: 110_Multi_Field_Search/40_Bad_frequencies.json
smith在first_name字段中的高IDF值會壓倒peter在first_name字段和smith在last_name字段中的兩個低IDF值。
##### 解決方案
這個問題僅在我們處理多字段時存在。如果我們將所有這些字段合并到一個字段中,該問題就不復存在了。我們可以向person文檔中添加一個full_name字段來實現:
```Javascript
{
"first_name": "Peter",
"last_name": "Smith",
"full_name": "Peter Smith"
}
```
當我們只查詢full_name字段時:
* 擁有更多匹配單詞的文檔會勝過那些重復出現一個單詞的文檔。
* minimum_should_match和operator參數能夠正常工作。
* first_name和last_name的倒排文檔頻度會被合并,因此smith無論是first_name還是last_name都不再重要。
盡管這種方法能工作,可是我們并不想存儲冗余數據。因此,ES為我們提供了兩個解決方案 - 一個在索引期間,一個在搜索期間。下一節對它們進行討論。
<!--
[[field-centric]]
=== Field-Centric Queries
All three of the preceding problems stem from ((("field-centric queries")))((("multifield search", "field-centric queries, problems with")))((("most fields queries", "problems with field-centric queries")))`most_fields` being
_field-centric_ rather than _term-centric_: it looks for the most matching
_fields_, when really what we're interested is the most matching _terms_.
NOTE: The `best_fields` type is also field-centric((("best fields queries", "problems with field-centric queries"))) and suffers from similar problems.
First we'll look at why these problems exist, and then how we can combat them.
==== Problem 1: Matching the Same Word in Multiple Fields
Think about how the `most_fields` query is executed: Elasticsearch generates a
separate `match` query for each field and then wraps these match queries in an outer `bool` query.
We can see this by passing our query through the `validate-query` API:
[source,js]
--------------------------------------------------
GET /_validate/query?explain
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/40_Entity_search_problems.json
which yields this `explanation`:
(street:poland street:street street:w1v)
(city:poland city:street city:w1v)
(country:poland country:street country:w1v)
(postcode:poland postcode:street postcode:w1v)
You can see that a document matching just the word `poland` in _two_ fields
could score higher than a document matching `poland` and `street` in one
field.
==== Problem 2: Trimming the Long Tail
In <<match-precision>>, we talked about((("and operator", "most fields and best fields queries and")))((("minimum_should_match parameter", "most fields and best fields queries"))) using the `and` operator or the
`minimum_should_match` parameter to trim the long tail of almost irrelevant
results. Perhaps we could try this:
[source,js]
--------------------------------------------------
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"operator": "and", <1>
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/40_Entity_search_problems.json
<1> All terms must be present.
However, with `best_fields` or `most_fields`, these parameters are passed down
to the generated `match` queries. The `explanation` for this query shows the
following:
(+street:poland +street:street +street:w1v)
(+city:poland +city:street +city:w1v)
(+country:poland +country:street +country:w1v)
(+postcode:poland +postcode:street +postcode:w1v)
In other words, using the `and` operator means that all words must exist _in
the same field_, which is clearly wrong! It is unlikely that any documents
would match this query.
==== Problem 3: Term Frequencies
In <<relevance-intro>>, we explained that the default similarity algorithm
used to calculate the relevance score ((("term frequency", "problems with field-centric queries")))for each term is TF/IDF:
Term frequency::
The more often a term appears in a field in a single document, the more
relevant the document.
Inverse document frequency::
The more often a term appears in a field in all documents in the index,
the less relevant is that term.
When searching against multiple fields, TF/IDF can((("Term Frequency/Inverse Document Frequency (TF/IDF) similarity algorithm", "surprising results when searching against multiple fields"))) introduce some surprising
results.
Consider our example of searching for ``Peter Smith'' using the `first_name`
and `last_name` fields.((("inverse document frequency", "field-centric queries and"))) Peter is a common first name and Smith is a common
last name--both will have low IDFs. But what if we have another person in
the index whose name is Smith Williams? Smith as a first name is very
uncommon and so will have a high IDF!
A simple query like the following may well return Smith Williams above
Peter Smith in spite of the fact that the second person is a better match
than the first.
[source,js]
--------------------------------------------------
{
"query": {
"multi_match": {
"query": "Peter Smith",
"type": "most_fields",
"fields": [ "*_name" ]
}
}
}
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/40_Bad_frequencies.json
The high IDF of `smith` in the first name field can overwhelm the two low IDFs
of `peter` as a first name and `smith` as a last name.
==== Solution
These problems only exist because we are dealing with multiple fields. If we
were to combine all of these fields into a single field, the problems would
vanish. We could achieve this by adding a `full_name` field to our `person`
document:
[source,js]
--------------------------------------------------
{
"first_name": "Peter",
"last_name": "Smith",
"full_name": "Peter Smith"
}
--------------------------------------------------
When querying just the `full_name` field:
* Documents with more matching words would trump documents with the same word
repeated.
* The `minimum_should_match` and `operator` parameters would function as
expected.
* The inverse document frequencies for first and last names would be combined
so it wouldn't matter whether Smith were a first or last name anymore.
While this would work, we don't like having to store redundant data. Instead,
Elasticsearch offers us two solutions--one at index time and one at search
time--which we discuss next.
-->
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion