#空搜索
最基本的搜索API表單是**空搜索(empty search)**,它沒有指定任何的查詢條件,只返回集群索引中的所有文檔:
```Javascript
GET /_search
```
響應內容(為了編輯簡潔)類似于這樣:
```Javascript
{
"hits" : {
"total" : 14,
"hits" : [
{
"_index": "us",
"_type": "tweet",
"_id": "7",
"_score": 1,
"_source": {
"date": "2014-09-17",
"name": "John Smith",
"tweet": "The Query DSL is really powerful and flexible",
"user_id": 2
}
},
... 9 RESULTS REMOVED ...
],
"max_score" : 1
},
"took" : 4,
"_shards" : {
"failed" : 0,
"successful" : 10,
"total" : 10
},
"timed_out" : false
}
```
## `hits`
響應中最重要的部分是`hits`,它包含了`total`字段來表示匹配到的文檔總數,`hits`數組還包含了匹配到的前10條數據。
`hits`數組中的每個結果都包含`_index`、`_type`和文檔的`_id`字段,被加入到`_source`字段中這意味著在搜索結果中我們將可以直接使用全部文檔。這不像其他搜索引擎只返回文檔ID,需要你單獨去獲取文檔。
每個節點都有一個`_score`字段,這是**相關性得分(relevance score)**,它衡量了文檔與查詢的匹配程度。默認的,返回的結果中關聯性最大的文檔排在首位;這意味著,它是按照`_score`降序排列的。這種情況下,我們沒有指定任何查詢,所以所有文檔的相關性是一樣的,因此所有結果的`_score`都是取得一個中間值`1`
`max_score`指的是所有文檔匹配查詢中`_score`的最大值。
## `took`
`took`告訴我們整個搜索請求花費的毫秒數。
## `shards`
`_shards`節點告訴我們參與查詢的分片數(`total`字段),有多少是成功的(`successful`字段),有多少的是失敗的(`failed`字段)。通常我們不希望分片失敗,不過這個有可能發生。如果我們遭受一些重大的故障導致主分片和復制分片都故障,那這個分片的數據將無法響應給搜索請求。這種情況下,Elasticsearch將報告分片`failed`,但仍將繼續返回剩余分片上的結果。
## `timeout`
`time_out`值告訴我們查詢超時與否。一般的,搜索請求不會超時。如果響應速度比完整的結果更重要,你可以定義`timeout`參數為`10`或者`10ms`(10毫秒),或者`1s`(1秒)
```javascript
GET /_search?timeout=10ms
```
Elasticsearch將返回在請求超時前收集到的結果。
超時不是一個斷路器(circuit breaker)(譯者注:關于斷路器的理解請看警告)。
> ## 警告
> 需要注意的是`timeout`不會停止執行查詢,它僅僅告訴你**目前**順利返回結果的節點然后關閉連接。在后臺,其他分片可能依舊執行查詢,盡管結果已經被發送。
> 使用超時是因為對于你的業務需求(譯者注:SLA,Service-Level Agreement服務等級協議,在此我翻譯為業務需求)來說非常重要,而不是因為你想中斷執行長時間運行的查詢。
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion