[[parent-child-performance]]
=== Practical Considerations
Parent-child joins can be a useful technique for managing relationships when
index-time performance((("parent-child relationship", "performance and"))) is more important than search-time performance, but it
comes at a significant cost. Parent-child queries can be 5 to 10 times slower
than the equivalent nested query!
==== Memory Use
At the time of going to press, the parent-child ID map is still held in
memory.((("parent-child relationship", "memory usage")))((("memory usage", "parent-child ID map"))) There are plans to change the map to use doc values instead, which
will be a big memory saving. Until that happens, you need to be aware of the
following: the string `_id` field of every parent document has to be held in memory, and
every child document requires 8 bytes (a long value) of memory. Actually,
it's a bit less thanks to compression, but this gives you a rough idea.
You can check how much memory is being used by the parent-child cache by
consulting ((("indices-stats API")))the `indices-stats` API (for a summary at the index level) or the
`node-stats` API (for a summary at the node level):
[source,json]
-------------------------
GET /_nodes/stats/indices/id_cache?human <1>
-------------------------
<1> Returns memory use of the ID cache summarized by node in a human-friendly format.
==== Global Ordinals and Latency
Parent-child uses <<global-ordinals,global ordinals>> to speed((("global ordinals")))((("parent-child relationship", "global ordinals and latency"))) up joins.
Regardless of whether the parent-child map uses an in-memory cache or on-disk
doc values, global ordinals still need to be rebuilt after any change to the
index.
The more parents in a shard, the longer global ordinals will take to build.
Parent-child is best suited to situations where there are many children for
each parent, rather than many parents and few children.
Global ordinals, by default, are built lazily: the first parent-child query or
aggregation after a refresh will trigger building of global ordinals. This
can introduce a significant latency spike for your users. You can use
<<eager-global-ordinals,`eager_global_ordinals`>> to((("eager global ordinals"))) shift the cost of
building global ordinals from query time to refresh time, by mapping the
`_parent` field as follows:
[source,json]
-------------------------
PUT /company
{
"mappings": {
"branch": {},
"employee": {
"_parent": {
"type": "branch",
"fielddata": {
"loading": "eager_global_ordinals" <1>
}
}
}
}
}
-------------------------
<1> Global ordinals for the `_parent` field will be built before a new segment
becomes visible to search.
With many parents, global ordinals can take several seconds to build. In this
case, it makes sense to increase the `refresh_interval` so((("refresh_interval setting"))) that refreshes
happen less often and global ordinals remain valid for longer. This will
greatly reduce the CPU cost of rebuilding global ordinals every second.
==== Multigenerations and Concluding Thoughts
The ability to join multiple generations (see <<grandparents>>) sounds
attractive until ((("grandparents and grandchildren")))((("parent-child relationship", "multi-generations")))you think of the costs involved:
* The more joins you have, the worse performance will be.
* Each generation of parents needs to have their string `_id` fields stored in
memory, which can consume a lot of RAM.
As you consider your relationship schemes and whether parent-child is right for you,
consider this advice ((("parent-child relationship", "guidelines for using")))about parent-child relationships:
* Use parent-child relationships sparingly, and only when there are many more children than parents.
* Avoid using multiple parent-child joins in a single query.
* Avoid scoring by using the `has_child` filter, or the `has_child` query with
`score_mode` set to `none`.
* Keep the parent IDs short, so that they require less memory.
_Above all:_ think about the other relationship techniques that we have discussed before reaching for parent-child.
- Introduction
- 入門
- 是什么
- 安裝
- API
- 文檔
- 索引
- 搜索
- 聚合
- 小結
- 分布式
- 結語
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障轉移
- 橫向擴展
- 更多擴展
- 應對故障
- 數據
- 文檔
- 索引
- 獲取
- 存在
- 更新
- 創建
- 刪除
- 版本控制
- 局部更新
- Mget
- 批量
- 結語
- 分布式增刪改查
- 路由
- 分片交互
- 新建、索引和刪除
- 檢索
- 局部更新
- 批量請求
- 批量格式
- 搜索
- 空搜索
- 多索引和多類型
- 分頁
- 查詢字符串
- 映射和分析
- 數據類型差異
- 確切值對決全文
- 倒排索引
- 分析
- 映射
- 復合類型
- 結構化查詢
- 請求體查詢
- 結構化查詢
- 查詢與過濾
- 重要的查詢子句
- 過濾查詢
- 驗證查詢
- 結語
- 排序
- 排序
- 字符串排序
- 相關性
- 字段數據
- 分布式搜索
- 查詢階段
- 取回階段
- 搜索選項
- 掃描和滾屏
- 索引管理
- 創建刪除
- 設置
- 配置分析器
- 自定義分析器
- 映射
- 根對象
- 元數據中的source字段
- 元數據中的all字段
- 元數據中的ID字段
- 動態映射
- 自定義動態映射
- 默認映射
- 重建索引
- 別名
- 深入分片
- 使文本可以被搜索
- 動態索引
- 近實時搜索
- 持久化變更
- 合并段
- 結構化搜索
- 查詢準確值
- 組合過濾
- 查詢多個準確值
- 包含,而不是相等
- 范圍
- 處理 Null 值
- 緩存
- 過濾順序
- 全文搜索
- 匹配查詢
- 多詞查詢
- 組合查詢
- 布爾匹配
- 增加子句
- 控制分析
- 關聯失效
- 多字段搜索
- 多重查詢字符串
- 單一查詢字符串
- 最佳字段
- 最佳字段查詢調優
- 多重匹配查詢
- 最多字段查詢
- 跨字段對象查詢
- 以字段為中心查詢
- 全字段查詢
- 跨字段查詢
- 精確查詢
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐標點
- 地理坐標點
- 通過地理坐標點過濾
- 地理坐標盒模型過濾器
- 地理距離過濾器
- 緩存地理位置過濾器
- 減少內存占用
- 按距離排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash單元過濾器
- 地理位置聚合
- 地理位置聚合
- 按距離聚合
- Geohash單元聚合器
- 范圍(邊界)聚合器
- 地理形狀
- 地理形狀
- 映射地理形狀
- 索引地理形狀
- 查詢地理形狀
- 在查詢中使用已索引的形狀
- 地理形狀的過濾與緩存
- 關系
- 關系
- 應用級別的Join操作
- 扁平化你的數據
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套對象
- 嵌套映射
- 嵌套查詢
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion